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The rates of the US hospitalization and mortality caused by Listeria 

monocytogenes was estimated to be the highest of 31 food-borne pathogens including 

Salmonella, Escherichia coli, Campylobacter, and Clostridium. This pathogen has an 

ability to survive under extreme conditions widely found in the natural environment and 

food. Among 13 serovars L. monocytogenes serovar 4b, 1/2a and 1/2b are mainly 

associated with human listeriosis outbreaks. The deadliest outbreaks of human listeriosis 

and massive product recalls in multi-states were associated with ready-to-eat (RTE) food 

products such as mexican-style cheese, turkey deli meat, cabbage, and cantaloupes 

contaminated with the bacterium. Thus, contamination of food products with L. 

monocytogenes is a major concern for the food industry, regulatory agents and 

consumers. 

This study used oligonucleotide probe-based DNA array, quantitative real time 

RT-PCR, gene manipulation, biochemical assays, and electron microscopy techniques to 

better understand the molecular mechanisms of L. monocytogenes under stress conditions 

on various food matrices. The transcriptome profiles of L. monocytogenes via microarray 
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analysis and quantitative PCR identified genes that are involved in adaptation, 

attachment, or survival and growth of the pathogen under a stress condition on a food 

matrix. The mechanistic and functional studies further characterized the biological 

properties of L. monocytogenes in various RTE food products. We showed that specific 

genes involved in energy metabolism, biosynthesis of proteins, and cellular processes to 

affect listerial growth or adaptation to a RTE meat matrix were changed with no 

associated changes in virulence factor expression. We also reported that the effects of salt 

stress on the expression of genes involved in PTS and its related metabolic enzymes in L. 

monocytogenes. In addition, a novel gene involved in attachment to RTE vegetables and 

fruits was discovered. 

The concern about the prevalence of L. monocytogenes in RTE food has been 

escalated by recent food-borne outbreaks, suggesting that the prevention of human 

listeriosis become the top priority for the food industry. Data from these studies help us to 

better understand the survival, growth and contamination of the bacterium under different 

conditions. The information will help the development of prevention strategies in RTE 

meat products, vegetables and fruits. 
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CHAPTER I 

INTRODUCTION 

Listeria monocytogenes is an opportunistic and zoonotic bacterial pathogen that 

can cause serious clinical illness (listeriosis) in susceptible individuals such as newborn, 

pregnant women, and immunocompromised persons including patients with transplants, 

cancer, AIDS, diabetes, or alcoholism. Survey and epidemiology studies have 

demonstrated that most cases of human listeriosis have been linked to the consumption of 

ready-to-eat (RTE) products contaminated with L. monocytogenes. Therefore, the 

prevention of human listeriosis caused by the ingestion of RTE foods is a great challenge 

for the food industry. However, the pathogen, found in the natural environments and 

food, has an ability to survive under harsh conditions such as high acidity, low 

temperature, high osmolarity, and high hydrostatic pressure. 

Studies for L. monocytogenes contamination or decontamination in RTE foods 

have been widely conducted; however, the effectiveness of the prevention strategies is 

rather limited. One of the primary reasons is that we lack of understanding of the 

components that contribute to bacterial survival, growth and attachment to food. 

Accordingly, the purpose of my dissertation research was to indentify genes and 

characterize their functions associated with attachment, virulence, or growth of L. 

monocytogenes. Data from this study may provide a better understanding of the 

molecular mechanisms of L. monocytogenes attachment, colonization, adaptation, or 

1 



www.manaraa.com

 

 

  

  

      

  

   

   

     

 

  

 

 

  

 

survival/growth in a specific environmental stress condition or in various food matrices 

including turkey deli meat, leafy vegetables and fruit. 

The specific objectives of my dissertation study include: 

1) To examine the survival or growth of L. monocytogenes on RTE deli meat, leafy 

vegetables, or under salt stress condition. 

2) To determine target genes involved in survival, adaptation, colonization, or 

growth of L. monocytogenes under environmental stress conditions. 

3) To characterize the functions of the proteins encoded by the target genes involved 

in the survival, adaptation, colonization, or growth of L. monocytogenes. 

The conventional and recent developed molecular biological techniques including 

oligonucleotide probe-based DNA array, quantitative real-time RT-PCR, gene 

manipulation, biochemical assays, electron microscopy techniques, in silico analysis, and 

statistical data analyses were used to address the research questions and hypotheses. 

2 
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CHAPTER II 

LITERATURE REVIEW 

2.1 A high risk assessment of Listeria monocytogenes in ready-to-eat (RTE) food 
products 

Most cases of human listeriosis have been associated with the ingestion of RTE 

products contaminated with L. monocytogenes. Deli meats, dairy products, and 

frankfurters in various RTE foods have been mostly linked to human listeriosis (Table 

2.1). Among 13 serovars L. monocytogenes serovars 4b, 1/2a, and 1/2b are mainly linked 

to the listeriosis outbreak (25). According to serotype, tendency to cause death is shown 

to be different. The most common cause of death by serotype 4b is central nervous 

system (CNS) infection, whereas 1/2a and 1/2b cause bacteremia and maternal-neonatal 

diseases in many listeriosis cases, respectively (26, 63). The cost estimates for diseases 

caused by L. monocytogenes and others including Escherichia. coli O157:H7, non-O157 

Shiga-toxin producing E. coli, Campylobactor, and Samonella approach 2.3 and 4.6 

billion dollars per year in the United States, respectively (8). Major outbreaks of 

listeriosis including a recent deadliest outbreak in the United States are shown in Table 

2.1. Most of the major outbreaks were also caused by the ingestion of dairy products, 

poultry deli meat and frankfurters, and vegetables and fruit contaminated with serotype 

4b strains. Increased consumption of RTE foods will increase the prevalence of L. 

monocytogenes in RTE foods. Therefore, the contamination or cross-contamination of 

RTE foods with L. monocytogenes during harvesting, processing, distribution, and 

storage has been a major concern for the food industry. Accordingly, efforts (from farms 
3 
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or processing facilities to retail stores) to reduce or protect the contamination of the 

pathogen have been triggered. In addition, extensive studies on the protection or 

decontamination of L. monocytogenes in RTE foods have been conducted to elucidate the 

antimicrobial effects by chemical or physical methods using a variety of sanitizers, 

preservatives, antimicrobial natural compounds, heat, pH, hydrostatic pressure, water 

activity, etc. 

2.2 RTE food products associated with major human listeriosis 

2.2.1 Dairy products 

A recent study (16) showed a high prevalence of L. monocytogenes in healthy 

ruminant animals including sheep (14.2%), beef cattle (30.6%), and dairy cattle (46.3%). 

In addition, strain diversity of the pathogen was also indentified. L. monocytogenes 

serotype 4b (84.2%), 1/2a (13.2%), 1/2b (1.8%), and 4c (0.9%) were identified from 114 

isolates from the domestic animals. The results have suggested that dairy cattle are an 

important reservoir for L. monocytogenes 4b strain, which is highly prevalent in human 

listeriosis (16). In general, milk or its derived products are generally recognized as safe 

food from listeriosis through proper pasteurization processes, such as ultra high 

temperature (UHT), high temperature short time (HTST), or low temperature long time 

(LTLT) and an aseptic packaging process in dairy plants (34). However, post-

pasteurization contamination in processed dairy products can occur (37). In addition, 

unpasteurized or abnormally treated milk (i.e. inadequate pasteurization process, 

contaminated processing equipment, etc.) and raw milk cheese product have been linked 

to human listeriosis (30, 37, 

http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5740a1.htm). In 1984, Listeria-

4 
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contaminated Mexican-style soft cheese, an unripened type and consumed fresh, was 

linked to one of the deadliest outbreaks of the human listeriosis. Consequently, L. 

monocytogenes was highlighted as a food-borne pathogen for the first time. Therefore, 

fluid milk or its products, which are produced without pasteurizing, can be a potential 

vehicle for the transmission of L. monocytogenes into humans. 

2.2.2 Frankfurters and sliced poultry deli meat 

The US Food and Drug Administration (FDA) and the Food Safety Inspection 

Service (FSIS) posed that poultry deli meats and frankfurters with dairy products have 

the greatest risk for listeriosis in comparison to other food products (8, 22). Several major 

outbreaks of human listeriosis associated with the ingestion of frankfurters (1998-1999) 

and RTE turkey deli meat (1998 and 2002) have occurred in the US. The majority of 

isolates from patients and contaminated products belong to serotype 4b. The National 

Alliance for Food Safety and Security (NAFSS), which consists of twenty-five research 

universities, extensively studied the prevalence and level of L. monocytogenes in samples 

of prepackaged deli meat, sliced deli meat, and the retail-sliced deli meat from four states 

including California, Maryland, Georgia, and Tennessee. The NAFSS designed a risk 

assessment model for L. monocytogenes in RTE meat and poultry deli meat by evaluating 

four stages (retail occurrence, growth, consumption, and dose-response) (22). Data 

indicated that the prevalence of L. monocytogenes was higher in retail-sliced deli meat 

(1.39%) than prepackaged deli meats (0.17%), and the incidence of the pathogen was 

relatively higher in poultry (0.65%), beef (1.28%) and pork (0.87%) deli meats than other 

deli meat types. The growth rate of L. monocytogenes in products prepackaged with 

antimicrobial growth inhibitor (organic acid, fatty acids, sodium nitrite, or smoke) was 

5 
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predicted to decrease, resulting in increased shelf life. Furthermore, results have shown 

that increasing the shelf life of deli meat products resulted in a decrease in the number of 

deaths or illnesses per year (22). 

2.2.3 Vegetables and fruits 

Only one major outbreak of listeriosis is related to the ingestion of vegetables 

such as raw celery, tomatoes, and lettuce (30). In fact, fruits and vegetables have not been 

directly associated with a major outbreak of listeriosis in the US until the deadliest 

outbreak caused by contaminated cantaloupe consumption in 2011. At least thirty deaths 

from multiple states were reported. Many pathogenic microorganisms, including L. 

monocytogenes, are frequently isolated from raw vegetables (cabbage, broccoli, bean 

sprouts, cucumber, lettuce, pepper, potatoes, etc) and fruits (cantaloupes watermelon, 

strawberries, etc) (6, 27). Perhaps, the reasons for a high incidence of L. monocytogenes 

in raw vegetables and fruits may be due to proximity to soil or using irrigated water or 

fertilizer contaminated with pathogens. Lacking an effective strategy to control L. 

monocytogenes contamination in fresh vegetables and fruits would mean a high risk for 

humans to consume contaminated raw vegetables and fruits. 

2.3 Molecular mechanisms of Listeria monocytogenes under environmental stress 
conditions 

L. monocytogenes can be exposed to harsh conditions including food processing 

and environmental stresses by heat, acid, alkali, osmosis, oxidation, starvation, or 

antimicrobial agents. Nevertheless, the pathogen has shown to overcome and adapt to the 

stressful conditions throughout the expression of regulatory proteins, distinct properties 

in an advanced metabolic system (i.e. phosphoenopyruvate-dependent 

6 



www.manaraa.com

 

 

 

  

  

       

  

 

 

 

  

  

 

 

 

 

 

  

phosphotransferase system, PTS and carbon catabolite repression, CCR), quorum 

sensing, or polycistronic gene expression pattern (9, 13, 40, 51, 52). Thus, bacteria 

efficiently and quickly sense a change in an environmental stress condition and 

synthesize gene products essential for their survival or growth under the conditions. In 

soil, irrigated water, decaying vegetation, or silage, the pathogen does not highly express 

regulatory proteins or virulence factors in comparison to human and animals (21). 

Regulatory proteins in L. monocytogenes encoded by sigB (a transcriptional regulator) or 

prfA (a central response regulator) control virulence genes in response to environmental 

stresses (15, 18, 19, 20, 32, 33, 67, 68). 

2.3.1 Thermal stress 

L. monocytogenes has an ability to survive in a wide range of temperatures from 

zero to 48°C or pasteurization temperature (65-82.8°C) in RTE food products (34, 39, 

56). The optimal temperature for the growth of the pathogen is 30 to 37°C. The 

expression of virulence genes such as prfA, hly, and actA is severely repressed at 

temperatures below 30°C, while genes such as flaA, actA, cheA, or cheY involved in 

motility or chemotaxis are repressed at 37°C (14, 36). Heat shock-induced genes encode 

chaperones and proteases are used to protect the misfolding or degradation of proteins or 

enzymes in their survival maintenance or cell growth (66). Although much research has 

been conducted on heat shock or cold shock stresses, the molecular adaptive responses of 

L. monocytogenes at different temperatures are not fully understood. Physiological 

changes in the extended lag phase, the decreased growth rate, and the reduced cell 

numbers of the pathogen were observed during incubation period at refrigerator 

temperature (11). A study has demonstrated that -ketoacyl-acyl carrier protein synthase 

7 
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III (FabH) play an important role to increase the content of anteiso-branched chain fatty 

acids (BCFAs) at low temperature (57). A characteristic of the plasma membrane of gram 

positive bacteria including L. monocytogenes that it is consists of high contents of iso-

and anteiso-BCFA, which have low melting points for maintaining membrane fluidity at 

low temperatures (2). Anteiso-BCFAs are produced from 2-methylbutyryl-CoA, an 

intermediate the metabolism of isoleucine. Singh and colleagues found that FabH had 

high catalytic efficiency with 2-methylbutyryl-CoA via steady-state kinetic analysis of L. 

monocytogenes at 10 and 30°C. The finding suggests that FabH increases the content of 

anteio-BCFAs by high substrate specificity of FabH with 2-methylbutyryl-CoA (57). 

Recently, a study showed that cspA and pgpH genes are associated with cold stress (3). 

Arguedas-Villa et al. (3) evaluated the growth of 20 L. monocytogenes strains from 

different origin (human listeriosis case, food product, or environment) at 4°C or 30°C for 

2 h, and divided them into two groups (short vs. long lag time). They found that the 

transcription level of sigB, cspA and pgpH was increased in short lag phase group, 

suggesting that the proteins may be involved in cold resistant. 

Fewer studies on the cold shock responses in L. monocytogenes have been 

conducted compared to heat shock responses involved in manufacturing RTE deli meat 

products because the pathogen is usually exposed to heat stress during food processing. 

The responses of L. monocytogenes to heat stress trigger the release of bacterial proteins 

such as heat shock proteins (Hsp70 and Hsp90), single stranded binding proteins (Ssb, 

DnaK, DnaJ, Dna G, and DnaB), and some other chaperones and proteases (GroEL, 

GroES, CplC, and CplP) (35, 46, 53). In particular, the function of Hsps includes the 

repair of injured cells and refolding of aberrant proteins by heat shock. Transcriptional 

8 
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activator, SigB, also plays an important role in regulating heat shock proteins and other 

regulon via recognizing promoters of heat shock genes (66). 

2.3.2 pH stress 

L. monocytogenes can survive at a low-pH environment in the gastrointestinal 

tract or acidic foods. Acidification in RTE deli meat products is commonly used by 

adding acetate, lactates, diacetates, or organic acids as food preservatives. Survival at 

very low-pH environmental conditions is due to the acid tolerance response (ATR). ATR 

includes induction of proteins involved in glutamate decarboxylase (GAD) system and 

increase of proton efflux (60). The GAD operon consists of three genes, gadA, gadB, and 

gadC. gadA and gadB encode biochemically undistinguishable glutamic acid 

decarboxylase, and gadC encodes a putative glutamate or glutamate-γ-aminobutyrate 

(GABA) antipoter. Glutamate intracellularly transported via antipoter in L. 

monocytogenes is converted to GABA by GAD. The GAD decarboxylation reaction 

consumes H+, which increase intracellular pH. The survival of GAD gene deletion-

mutant (ΔgadAB) was shown to be reduced in synthetic human and ex-vivo porcine 

gastric fluid (12). Therefore, the GAD system is considered to be important for ATR. The 

synthesis of the chaperon GroEL and ATP synthase proteins was shown to be increased 

during the growth of L. monocytogenes at low temperature and acidic conditions (45). 

ATP synthase can generate proton-motive force to maintain the intercellular pH via 

translocation of H+ (10). Therefore, ATP synthase and heat shock proteins also play an 

important role in the ATR of L. monocytogenes. 

L. monocytogenes has an ability to resist high pH conditions encountered through 

their systemic infection in humans. The pathogen is often exposed to the stress when it is 
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phagocyted in phagocytic vacuoles or in the gastrointestinal tract in presence of 

pancreatic secretions (54, 61). Thus, how L. monocytogenes responds to alkaline stress is 

a crucial step for its survival in hosts. A recent study identified a hypothetical protein 

(lmo0841), named L. monocytogenes Ca2+-dependent ATPase 1 (LMCA1) (17). The 

authors found that LMCA1 has a high homology to eukaryotic and prokaryotic 

sacoplasmic reticulum Ca2+-ATPases (SERCA1a) and plasma membrane Ca2+-ATPases 

(PMCA). They measured ATPase activity of LMCA1 activity in the presence of various 

ions. Interestingly, LMCA1 has maximal activity at about pH 8.75, whereas SERCA1a is 

inactive. In addition, data presented that the enzymatic activities for Ca2+ affinity of 

LMCA1 mutants were severely decreased, suggesting that H+ is transported inversely to 

the direction of Ca2+ transport. This study suggests that LMCA1 may play an important 

role in maintaining intracellular pH by the transport of H+ and removal of Ca2+. Giotis et 

al. (24) found that in alkaline stress L. monocytogenes increased the proportions of 

anteiso-BCFAs as in low temperature, whereas the proportions were decreased in acidic 

condition, suggesting that a ratio of anteiso form to iso form of BCFAs may also play 

important role in pH adaptation. 

2.3.3 Nutritional stress 

L. monocytogenes adapts well to nutritional fluctuations in the natural 

environment. The bacterium has developed a starvation survival response (SSR) via 

physiological or morphological changes in response to glucose or multiple-nutrient 

starvation (28). A rapid decrease of the number of viable cells is one of the characteristics 

during long-term bacterial cell maintenance. This phenomenon may help for the 

maintenance of viable cells by utilizing nutrients from the dead cells (28). L. 
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monocytogenes may synthesize proteins only needed for the cell maintenance because 

starvation survival can be dependent on their limited intracellular amino acids and carbon 

sources. Especially, bacterial intracellular proteins (i.e. various PTS permeases) to uptake 

extracellular carbohydrates can be mainly used for sugar utilization by the fluctuations of 

preferred carbohydrates available (62). Unlike eukaryotes, L. monocytogenes can utilize 

various carbohydrates such as glucose, fructose, mannose, and cellobiose as a primary 

carbon source (50). Moreover, whole genome sequences of L. monocytogenes also 

present genes encoding proteins involved in the uptake of various sugars. Bacteria 

including L. monocytogenes can mimic their energy expenditure via a carbon catabolite 

repression (CCR) system (47). Glucose is the most preferred energy carbon source. Thus, 

the transcription level of genes involved in the synthesis or uptake of other carbon 

sources can be decreased until glucose is depleted (64). Phosphoenopyruvate-dependent 

phosphotransferase (PTS) system is an important and distinct means for extracellular 

sugar uptake using energy from phosphoenopyruvate in bacteria. A mechanistic study has 

shown that the growth of a ptsH mutant that lacks HPr, was repressed by impaired PTS 

(51). Interestingly, our recent data presented that the transcripts of PTS genes were also 

decreased with increased NaCl concentration (4). 

2.3.4 Oxidative stress 

Aerobic organisms contain superoxide dismutase, catalase, and peroxidase to 

eliminate O2
- and H2O2 produced during respiratory reactions (41). L. monocytogenes can 

be exposed to nitric oxide (NO), superoxide (O2
-), or hydrogen peroxide (H2O2) in 

phagocytic cells such as neutrophils or macrophages during the infection (41). Most of 

invasive bacteria are killed by those oxidant molecules in the phagosome of neutrophils 

11 



www.manaraa.com

 

 

 

 

   

 

 

  

 

  

    

 

  

 

 

 

  

     

    

  

and macrophages. However, some bacterial cells tolerate it. In E. coli, Dps (an iron-

binding protein) was synthesized abundantly to diminish DNA damage through binding 

Fe (II) and inhibiting the formation of hydroxyl radicals (70). Uhlich and colleagues (65) 

investigated the functions of Crp/Fnr family of L. monocytogenes strain F2365 using 

transposon mutagenesis. They suggested that Crp/Fnr family in L. monocytogenes strain 

F2365 is involved in oxidative stress. 

2.3.5 Osmotic stress 

In the food industry, salt is widely used as a general preservative or antibacterial 

agent because of its inhibitory effects on bacterial growth. Salt can damage the bacterial 

cells via the disruption of the bacterial maintenance of osmotic pressure between the 

cytoplasmic and the extracellular environments. However, L. monocytogenes can mediate 

the change of transporter proteins such as glycine betaine and carnitine encoded by betL, 

gbu operon, and opuC operon, resulting accumulation of osmoprotectants in the cell (1). 

However, the exact mechanism of osmoprotectants to osmotic stress is still unknown. In 

addition, RelA, HtrA, KdpE, LisRK, ProBA, BtlA, and Ctc involved in osmotic stress 

have been identified to be expressed in response to high osmolarity (5, 7, 22, 43, 58, 59, 

69). In particular, the two-component regulatory system Kdp is involved in osmotic 

stress. KdpE of the Kdp two-component regulatory system is associated with the uptake 

of K+ (31). The orfX of Kdp operon is also involved in osmotic stress adaptation. The K+ 

uptake by the Kdp system was shown to have a protective effect on the pathogen to 

osmotic stress (7). Interestingly, a recent study showed that the cold shock proteins 

(Csps) are involved in salt stress response (55). They found that the growth of csps 

deletion mutants grown in BHI with 3% NaCl (w/v) for 2 h at 4°C or 37°C significantly 
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inhibited, and the transcription level of csps were significantly decreased in the mutant 

strain compared to wild type L. monocytogenes. Data suggest that Csps can promote an 

adaptive ability of L. monocytogenes to osmotic stress. 

2.3.6 Antimicrobial stress 

The increase in prevalence of antimicrobial resistance in pathogens has become a 

major concern. Antibiotics can mostly damage pathogens via inhibition of cellular 

function, resulting in cytocidal or cytostatic effects. The wide use of antibiotics for 

human and animal treatment or animal growth promotion can increase the development 

of antimicrobial resistance (26). In addition, sanitizers or disinfectants used in food 

processing can also lead to the resistance (44). Antibiotic resistance genes in foodborne 

pathogens can be transferred through transformation, conjugation, or transposon. L. 

monocytogenes may develop antibiotic resistance via plasmid transfer from other gram-

positive bacteria (48). The treatment of pathogens with sub-lethal amounts of antibiotic 

can enhance the adaptation or development of antibiotic resistance in pathogens, resulting 

in higher levels of antibiotic or multiple antibiotics. According to a recent study, twenty-

one isolates of L. monocytogenes in human food samples from farms and food processing 

plants were tested for antibiotic resistance (49). Twenty out of 21 isolates were resistant 

to multi antibiotics. The effects of the combination of bacteriocin, chemical or physical 

treatment (i.e. nisin and carbon dioxide, carbon dioxide and cold shock, or nisin and cold 

shock) on L. monocytogenes have been investigated (37, 42, 56). The study showed that 

CO2
- increased the permeability of cell membrane via changing the lipid composition of 

cell membrane, resulting in the pore formation by nisin. 
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Table 2.1  Major outbreaks of listeriosis in the United States  

 Year S  erotype  Sources/Locations Cases   Deaths  Recall 

 1979  4b   Raw celery, tomatoes, lettuce  /  20 5  
 MA  

 1983  4b   Pasteurized milk/ MA  49  14
 

 1985  4b  Mexican-fresh soft cheese /  142  94 
 CA  

 1986  4b, 1/2a,     Ice cream and salami / PA   36  16 
  1/2b, 3b  

1998-  4b   Frankfurters, RTE meat, and   ≈100    6 deaths, 2   150 million 
 1999  poultry products   / 11 states  miscarriages   lbs. 

   Frankfurters and luncheon / Miscarriages, 
 1998  4b   MI (Sara Lee)  ≈500   stillbirth, and 

 >61 deaths   

 1999   Turkey deli meat / 10 states   29   3 miscarriages 
   and 4 deaths   

2000-  4b  Mexican cheese / NC   12 5  
 2001  

 2000  1/2a    Delicatessen sliced turkey /  29 7  
 USA  

  3 miscarriages   27.4 million  2002  4b   Turkey deli meat / 7 states   44  and stillbirth;  lbs. 
  7 deaths 

   1 stillbirth, 1 
 2007   Milk / MA  11  premature,  

   and 3 deaths   

 2011 1   /2a, 1/2b  Cantaloupe/28 states   146    30 deaths and 

ources from CDC, “Listeria”
 1 miscarriage   

S nd  2  ed. by Chris, B. and K. Alec, and Ho et al., 1986  
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Figure 2.1 The risk of listeriosis for selected RTE foods. 

Deli meats, dairy products, and frankfurters have been shown to be a high risk of 
listeriosis. Data were from FDA, CFSAN 2003, Quantitative Assessment of Relative Risk 
to Public Health from Foodborne Listeria monocytogenes, Among Selected Categories of 
Ready-to-Eat Foods. 
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CHAPTER III 

TRANSCRIPTOME ANALYSIS OF LISTERIA MONOCYTOGENES GROWN ON A 

READY-TO-EAT MEAT MATRIX1 

3.1 Abstract 

The contamination of ready-to-eat (RTE) meat products with Listeria 

monocytogenes is a major concern for the food industry. For a better understanding of the 

adaptation and survival ability of L. monocytogenes grown on turkey deli meat, the 

transcriptome of L. monocytogenes strain F2365 was determined using a microarray. 

Microarray data were validated using a quantitative real time RT-PCR assay. Based on 

the microarray data, 39 and 45 genes from L. monocytogenes were transcriptionally up-

regulated and down-regulated, respectively. The genes regulated at the transcriptional 

level were mainly involved in energy metabolism, fatty acid and phospholipid 

metabolism, biosynthesis of proteins, transport and binding proteins, DNA metabolism, 

cellular processes, and regulatory functions. There was no significant change in the 

expression of genes encoding for known virulence factors such as sigB, prfA, inlA, inlB, 

plcA, plcB, and hly. This study suggests that L. monocytogenes grown on RTE deli meat 

changes its transcription involved in its metabolic pathways to obtain an energy source or 

to adapt to environmental change without altering the transcription levels of virulence 

1 Reprint with permission (Appendix) from Bae, D., M. R. Crowley, and C. Wang. 2011. Transcriptome 

analysis of Listeria monocytogenes grown on a ready-to-eat meat matrix. J Food Prot. 74:1104-11. 
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factors. The global transcriptome profiles provide a better understanding of the growth or 

adaptation of L. monocytogenes in RTE meat products. 

3.2 Introduction 

The Gram-positive facultative intracellular bacterium Listeria monocytogenes is a 

food-borne pathogen that causes human listeriosis. The pathogen, found in the natural 

environment and food, has an ability to survive and proliferate in food products under 

extreme conditions such as high acidity, low temperature, high osmolarity, and high 

hydrostatic pressure (5, 6, 26). The concern about the prevalence of L. monocytogenes in 

ready-to-eat (RTE) food has been escalated by food-borne outbreaks through the 

consumption of RTE meat products, in particular turkey deli slices. Risk assessment by 

the US Food and Drug Administration reported that turkey deli meat is one of the 

potential sources for L. monocytogenes infection. The Food Safety and Inspection Service 

(FSIS) recommends that turkey deli meat be consumed within five days after opening the 

package. Among the 13 serotypes of L. monocytogenes, serotype 4b is commonly 

associated with human outbreaks of listeriosis in susceptible individuals (10, 29). 

The RTE meat products contain a higher level of protein and about 1 to 2% (w/w) 

of sodium chloride with microbial growth inhibitors such as potassium lactate, sugar, 

sodium phosphates, potassium chloride, sodium acetate, sodium ascorbate, and sodium 

nitrite compared to Brain Heart Infusion (BHI) agar, the standard laboratory growth agar. 

Salt in particular has been considered as an antibacterial agent as an essential additive to 

enhance flavor, texture, and shelf life of meat products (20). In addition, antimicrobial 

growth inhibitors including lactates and diacetates used in retail-sliced or prepackaged 

RTE deli meat play an important role in controlling L. monocytogenes growth during 
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refrigerated storage (15, 18). A previous study demonstrated the limited inhibitory effects 

of salt and organic acids on the growth of L. monocytogenes during the processing of 

RTE turkey meat products (14). Additionally, the effects of acidic, osmotic, or nutritional 

stresses on the survival or adaptation of L. monocytogenes were elucidated when it was 

grown in BHI or conditional medium (22, 23). Burnett and colleagues showed that RTE 

meat products were a good source for the growth of L. monocytogenes (2). However, 

little is known about how L. monocytogenes adapts and multiplies in a RTE meat matrix 

and how the adaptive changes affect its ability to cause disease in humans. The high 

concentration of L. monocytogenes in RTE foods has been shown to cause human 

listeriosis (9). Therefore, the objective of this study was to determine the differential 

transcriptome profiles of L. monocytogenes grown on delicatessen turkey meat or BHI 

using a microarray to identify genes that contribute to listeriosis. 

3.3 Materials and methods 

3.3.1 Bacterial cultivation and growth 

Commercial packages of RTE smoked turkey breast deli meat slices containing 

0.9% sodium were purchased and stored at 4°C until use. L. monocytogenes strain F2365 

purchased from the American Type Culture Collection was maintained in a BHI medium 

(Difco Laboratories, Detroit, MI) broth with 20% glycerol at -80°C until use. Fifty 

microliters of F2365 from a frozen stock was inoculated and grown in 5 ml of BHI broth 

at 37°C overnight as previously described (17). Twenty microliters of this bacterial 

culture (approximately 1.0 × 106 CFU/ml) was inoculated into 5 ml of a fresh BHI 

medium and incubated at 37°C for 7 h in a MaxQ™ 4000 incubating and orbital shaker 

(Barnstead/Lab-Line, Dubuque, IA) at 180 rpm untill the optical density (O.D.) reached 
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A600 ≈ 0.8. Turkey deli meat slices were placed into a sterile stomacher bag. The surface 

area of a turkey deli meat slice was about five times larger than that of BHI agar plate. 

Thus, two-hundred microliters or 1ml of the inoculum was spread on 10 cm diameter 

BHI agar plates or on both sides of a turkey meat slice (about 5.9 × 105 CFU/cm2) in a 

stomacher bag, respectively. Bacteria were then incubated at 15°C for 5 days in a BOD10 

refrigerated incubator (Thermo Fisher Scientific-Revco, Asheville, NC) to mimic the 

temperature abuse condition. For the bacterial growth curve, 5.5 × 103/cm2 cells were 

placed on a turkey deli meat or a BHI agar plate at 15°C up to 5 days. Bacteria were 

washed and collected from BHI agar plates and turkey deli meat slices using 10 ml and 

40 ml of PBS (pH 7.4) [Invitrogen, Gland Island, NY], respectively. Bacterial cells were 

then enumerated by plate counts. Data were obtained from two independent experiments 

using quadruplicate plates per each experiment at different time points (8, 16, 24, 48, 72, 

96, and 120 h) [n = 8].  Data for the bacterial growth were analyzed by the procedures of 

analysis of variance (ANOVA) using SAS program (version 9.1.3; SAS Institute, Cary, 

NC). 

3.3.2 Cell collection and RNA isolation 

L. monocytogenes grown on BHI agar or turkey deli meat was collected after 5 

days of incubation at 15°C. Bags containing turkey deli meat and PBS were shaken using 

a reciprocal shaker (Model 3506, Lab-Line Instruments, Melrose Park, IL) at maximum 

speed for 5 min. The bacterial suspension was collected using a syringe and mixed with 

RNA Protect® (Qiagen, Valencia, CA) at a ratio of 1:2 (bacterial suspension : RNA 

protect). The mixture was incubated for 10 min at RT and centrifuged at 7,000 × g at 4°C 

for 10 min. Total RNA was extracted from the bacterial pellet and purified using TrizolTM 
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(Invitrogen, Carlsbad, CA) and the RNeasy® Mini Kit (Qiagen), respectively. The 

quality and concentration of the RNA was determined using an Agilent 2100 bioanalyzer 

(Agilent Technologies, Wilmington, DE) and  the Nanodrop®ND1000 UV-Vis 

spectrophotometer (Nonodrop Technologies, Wilmington, DE), respectively. RNA 

Integrity Numbers of RNA samples from BHI agar and turkey deli meat were 8.65 ± 0.46 

(SEM) and 8.32 ± 0.23 (SEM), respectively. The range of the OD values of RNA 

samples at 260/280 nm and A260/230 nm were between 1.8 and 2.0. 

3.3.3 Microarray analysis 

L. monocytogenes strain F2365 microarray slide (version 3) was obtained from 

the Pathogen Functional Genomic Research Centre (PFGRC). The microarray slide 

represents 2847 open reading frames (GenBank Accession no. AE017262). Total RNA 

was extracted, purified, and reverse transcribed into complementary DNA (cDNA) 

according to a slightly modified microarray protocols provided by the Institute for 

Genomic Research (TIGR) (http://pfgrc.jcvi.org/index.php/microarray/protocols.html). 

Briefly, about 2.5 μg of the total RNA for cDNA synthesis was reverse transcribed using 

2 μl of Smart® reverse transcriptase (Clontech, Palo Alto, CA) and 1 μl of random 

hexamers in the presence of 0.1 M dithiothreitol (DTT), 25 mM dNTP with a 3:2 ratio of 

aminoallyl-dUTP, and dTTP (Ambion, Austin, TX) with incubation at 42°C for 16 h in 

water bath. After completion of cDNA synthesis, the cDNA was purified, and 

unincorpotated aa-dUTP was removed using a MinElute® PCR purification kit (Qiagen) 

according to the manufacturer’s instructions. The purified cDNA was resuspended in 0.1 

M sodium carbonate buffer (pH 9.3), labeled with cyanine 3 (cy3) or cyanine 5 (cy5) 

dyes (Amersham Pharmacia Biotech, Piscataway, NJ), and then purified using a 
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MinElute® PCR purification kit (Qiagen). The labeling reaction on the purified cDNA 

was analyzed by measuring absorbance readings at 260 nm, 650 nm, and 550 nm in the 

Nanodrop. About 6.0 μg of each cDNA labeled with cy3 and cy5 were hybridized, dried, 

and resuspended in a 50 l hybridization buffer (40% formamide, 5× sodium 

chloride/sodium citrate buffer, 0.1% SDS, and 0.6 μg/μl salmon sperm DNA). The 

resuspended samples were loaded on a L. monocytogenes strain F2365 microarray slide 

v3, and the slides were incubated at 42°C for 16 h. Finally, the slides were washed with a 

low (2× SSC and 0.1% SDS), medium (0.1× SSC and 0.1% SDS), and high (0.1× SSC) 

stringency buffers containing 0.1mM DTT (Invitrogen), respectively. 

3.3.4 Microarray data analysis 

The two-channel microarray slides labeled with cy3 and cy5 were scanned at 10 

μm resolution with around 700 photomultiplier tube on the cy3 (532 nm) and cy5 (635 

nm) channels using a GenePix 4000B microarray scanner (Axon Instruments, Union 

City, CA). TM4 software developed by TIGR, including Spotfinder, Ginkgo, and 

Magnolia programs, were used to analyze microarray data. Tiff image files were 

converted to data files. The signal intensity of spots on the slides was adjusted and 

quantified by background subtraction using the Spotfinder program. Data LOWESS 

normalization was performed using the Ginkgo program. Simple Omnibus Format in 

Text (SOFT), converted from the processed data file by Magnolia 1.2, was used to 

deposit data to Gene Expression Omnibus (GEO). Values from the normalized data were 

transformed to a log2 scale. Three independent experiments using quadruplicate samples 

per each experiment (n = 12) were conducted. Each independent experiment included a 

set of flip dye assay. Significant differential expression was derived as a mean signal of 
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each gene of ≥ 1.5-fold on the log2 scale and a P < 0.05. The range of 10% to 14.29% 

trimmed mean was used to eliminate extreme observations. The log2 ratio for each gene 

was analyzed by Student’s t-test using SAS program. An annotation file provided from 

PFGRC was used to classify genes (http://cmr.jcvi.org/cgi-

bin/CMR/shared/MakeFrontPages.cgi?page=searches&crumbs=searches). The 

microarray data are available at 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20274. 

3.3.5 Quantitative real time reverse transcription polymerase chain reaction 

Primers listed in Table 3.1 were designed using Gene Runner software 

(http://www.generunner.net/), and the primers were synthesized by MWG Biotech Inc 

(Huntsville, AL). The transcription levels of selected up-regulated and down-regulated 

genes were validated by qRT-PCR. cDNA was synthesized by a two-step reverse 

transcription kit (Applied Biosystems, Foster City, CA) from the same samples used for 

the microarray experiments. The cDNA concentration was measured using the Nanodrop 

spectrophotometer. Briefly, 70 ng of the cDNA in 25 l of final volume with a Power 

SYBR® Green PCR Master Mix (Applied Biosystems) was amplified by PCR. The 

amplification was performed using a Mx3005P ™ Real-Time PCR System (Stratagene 

Inc., La Jolla, CA). The mixture was initially incubated at 95°C for 10 min, followed by 

40 cycles of 95°C for 15 sec, 58°C for 45 sec, and 72°C for 30 sec for PCR. rpoD (F:5’-

TGGATTCGTCAAGCGATAACC-3’, R:5’-GCACCGGAATACGGATIGTT-3’) and 

gap (F:5’-ACCAGTGTAAGCGTGAA-3’, R:5’-TCACAGCGCAAGACAAA-3’) were 

used as internal controls to normalize the expression rate of each gene (24, 28). mRNA 

expression levels of the target genes were calculated by using delta-delta Ct method. Four 
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independent experiments using triplicate RNA samples per each experiment were 

conducted (n = 12). Data for the mRNA expression levels of the target genes were 

analyzed by Student’s t-test using SAS program. 

3.4 Results and discussion 

Various levels of L. monocytogenes in RTE food products collected from patients’ 

refrigerators, retail stores, or plants have been shown through epidemiologic studies on 

human listeriosis (9). A study conducted by Farber et al. concluded that contaminated 

RTE foods, which caused listeriosis in healthy adults, contained various levels of L. 

monocytogenes ranging from 1.3 × 106 to 2.1 × 109 CFU/g (9). In this study, we 

7 5 2inoculated 1.1 × 10 CFU/g (5.9 × 10 CFU/cm ) of L. monocytogenes F2365 on a sliced 

turkey deli meat followed by incubation at 15°C for 5 days. Extended cool temperature 

storage may be associated with outbreaks of listeriosis because these temperatures allow 

the growth of L. monocytogenes in contaminated food (19). Therefore, the study was 

conducted to determine the global transcriptome profiles of L. monocytogenes grown on a 

RTE meat matrix under the conditions of high initial concentration of L. monocytogenes, 

cool temperatures and a maximum storage time suggested by US FDA regarding human 

listeriosis associated with consumption of RTE deli meat products. A previous study first 

reported global transcriptome profiling of L. monocytogenes strain F2365 grown in a 

liquid food using custom-made oligonucleotide microarray chips. A previous study first 

reported global transcriptome profiling of L. monocytogenes strain F2365 grown in a 

liquid food using custom-made oligonucleotide microarray chips (13). The current study 

using the same strain examined gene transcriptional levels of bacteria grown on a solid 

food matrix, compared to an agar culture medium. 
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The growth of L. monocytogenes on a turkey deli meat slice compared to BHI 

agar was significantly decreased after 8 h incubation in Figure 3.1 (P < 0.05 by 

ANOVA). Thirty-nine and forty-five genes from strain F2365 grown on a turkey deli 

meat were up-regulated and down-regulated, respectively, when compared to the 

bacterium grown on BHI agar (Tables 3.2 and 3.3). Microarray data were validated by 

qRT-PCR. A positive linear correlation (R = 0.89) between the qRT-PCR and the 

microarray data (Table 3.4) was determined. The significantly up- or down-regulated 

genes were classified into groups based on their cellular functions using annotation of L. 

monocytogenes strain F2365 provided by PFGRC. The up- and down-regulated genes 

were largely categorized into groups based on the functions of their end products 

including energy metabolism, fatty acid and phospholipid metabolism, biosynthesis of 

proteins, transport and binding proteins, DNA metabolism, cellular processes, and 

regulatory functions (Tables 3.2 and 3.3). Results indicate that L. monocytogenes grown 

on RTE deli meat changes its transcription involved in its metabolic pathways, 

suggesting that the changed gene transcriptional activity of the pathogen may be involved 

in the survival or adaptation to environmental change. 

Regarding energy metabolism, the transcript levels of LMOf2365_0366, 

LMOf2365_1074, LMOf2365_1395, and LMOf2365_1641 genes were increased, 

whereas the transcription levels of LMOf2365_2429, LMOf2365_2430, and 

LMOf2365_2431 genes were down-regulated. D-amino acid aminotransferase 

(LMOf2365_1641) catalyzes the conversion of pyruvate and D-glutamate to D-alanine 

and 2-oxoglutarate or vice versa. Interestingly, the two amino acids, D-gultamate and D-

alanine, are essential components of peptidoglycan in the cell wall of Gram-positive 

bacteria (1). Thompson et al. showed that the growth of L. monocytogenes with a double 
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mutant of genes (alanine racemase, dal and D-amino acid aminotransferase, dat), which 

are involved in the reaction of L-alanine oxidation to pyruvate via D-alanine, was notably 

decreased in the culture media supplemented with D-alanine (25). Therefore, the 

increased transcript of LMOf2365_1641 gene may be implicated in an increase in 

synthesizing the bacterial cell wall for the proliferation of L. monocytogenes on a turkey 

matrix. In contrast, all three genes (LMOf2365_2429, LMOf2365_2430, and 

LMOf2365_2431) that participate in a glycolytic pathway to catalyze the conversion of 

glyceraldehyde-3-phosphate from dihydroxyacetone phosphate to pyruvate used as a 

substrate in the Krebs cycle were down-regulated. The decreased transcription level of 

glycolytic enzymes may be caused by decreased energy needs from the bacteria grown 

under the environment that contains a high concentration of ATP, phosphenolpyuvate 

(PEP), or carbohydrates. 

Our data also showed that the expression of LMOf2365_1023, encoding 

phosphocarrier protein HPr, was transcriptionally up-regulated. HPr is involved in the 

phosphorylation of a transport and binding protein of L. monocytogenes to uptake 

carbohydrates, which are chemically modified and entered into cells via the 

phosphorylation cascade reaction of the components of the PEP-dependent 

phosphotransferase system (PTS). The increased HPr induces sugar uptake (7). 

Therefore, the increased transcript of LMOf2365_1023 gene in L. monocytogenes grown 

on a turkey matrix may induce the phophosporylation activity of PTS components, 

resulting in the induction of more sugar uptake. Interestingly, the transcript of 

LMOf2365_1317 (glutamine synthetase type I) gene was increased by 3.42-fold, but that 

of LMOf2365_2134 (glutamine aminotransferase) gene was decreased by 4.40-fold. It 

has been shown that glutamine is an essential amino acid for protein synthesis and an 
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energy source in cell growth or division (27). De novo nucleotide biosynthesis is 

important for the growth of bacteria (21). Additionally, genes encoding proteins 

associated with the synthesis of purines and pyrimidine as well as transport and binding 

of ribonucleotides (LMOf2365_1864, LMOf2365_1865, LMOf2365_1867, 

LMOf2365_868, and LMOf2365_2746) were transcriptionally up-regulated. Perhaps, an 

increased glutamine concentration through the changes in transcriptional activities of 

genes may affect bacterial growth. 

The transcription of LMOf2365_0054 and LMOf2365_2045 (divIVA) were up-

regulated. Those up-regulated genes are involved in encoding single-strand binding and 

cell division proteins, respectively. A study demonstrated that the single-stranded DNA-

binding proteins (SSBs) bind DNA or interact with enzymes for the maintenance of 

genome integrity by participating in DNA replication, recombination, or repair (16). The 

growth of S. pneumoniae with mutant of divIVA, encoding a cell division protein was 

severely inhibited with morphological changes and abnormal cell division (8). The 

transcription of LMOf2365_0544, LMOf2365_1004, LMOf2365_1479, 

LMOf2365_1826, LMOf2365_2224, LMOf2365_2263, and LMOf2365_2461 were 

down-regulated. The down-regulated genes encoding a universal stress protein family 

and cellular detoxification protein were shown to be increased by harsh environmental 

conditions (3). The data suggest that L. monocytogenes may not be damaged severely in 

the turkey deli meat incubation condition. 

The present study reveals the physiological changes of L. monocytogenes grown 

on a RTE meat matrix at the transcriptional level. Our previous study showed that L. 

monocytogenes grown on a RTE turkey meat matrix was more invasive to mouse 

macrophage cell line J774A.1 when compared to the bacteria grown on BHI (12). sigB 
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and prfA transcriptional regulator genes can be activated under an extracellular (e.g. 

osmotic, oxidative, acidic, or nutritional stress) or intracellular conditions. The stress-

response or virulence genes such as cspD, lmo1601, bsh, bilE operon, inlA, inlB, plcA, 

plcB, actA, and hly have shown to be mediated by sigB or/and prfA activity (4, 11). 

However, the transcript levels of genes (inlA, inlB, plcA, plcB, actA, hly, prfA, and sigB) 

associated with stress-responses and virulence in L. monocytogenes grown on a turkey 

deli meat when compared to the bacterium grown on a BHI agar plate in the study were 

not significantly changed. This may be due to the RTE meat deli product used in the 

study. The commercial product contains less than 2% salt and organic acid compounds by 

weight. The amount of the antilisterial agents may contribute to resistance of L. 

monocytogenes to a RTE turkey deli meat. 

In conclusion, outbreaks of listeriosis due to ingestion of contaminated RTE meat 

products have become a major concern. In the United States, the food industry has made 

a tremendous effort to achieve zero tolerance for L. monocytogenes in RTE meat 

products. The treatment on RTE products with salt, organic acids, or high pressure is 

commonly used to inhibit the bacterial cell growth or prevent a cross-contamination (14). 

We report that specific genes involved in energy metabolism, biosynthesis of proteins, 

and cellular processes to affect listerial growth or adaptation to a RTE meat matrix were 

changed with no associated changes in virulence factor expression. The microarray 

database provides a baseline for further study of how L. monocytogenes behaves under 

the conditions with a high level of L. monocytogenes contamination, extended cool 

temperatures, and a recommended maximum storage time linked to a delicatessen turkey 

meat. This study may also contribute to the development of novel strategies in RTE deli 

meat preservation and storage. 
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Table 3.1 The design of primers used for the quantitative real time RT-PCR to validate 
the changed genes of L. monocytogenes strain F2365 grown on RTE turkey 
deli meat as compared to growth of the same strain on BHI agar plates 

Gene Locus Forward Primer Reverse Primer References 

rpoD LMOf2365_1473 TGGATTCGTCAAGCGATAACC GCACCGGAATACGGATIGTT (28) 

gap LMOf2365_2432 ACCAGTGTAAGCGTGAA TCACAGCGCAAGACAAA (24) 

LMOf2365_1443 TGTCGCTGGTATTGAGGATG ACAAACGGCGCACTACTGG this study 

LMOf2365_1826 TAGTAGAAATGCGGTTGGTG CGAGCCGCATTACTATTCAA this study 

LMOf2365_1876 TTGGAAATGTGCTTGCGGTG CACTCACTGCTCCAAATGTA this study 

LMOf2365_2133 TTTGCTGCTGGTGGTGTTGC TTCTGGGTTAAGGCGAGACA this study 

LMOf2365_2134 GAACTTGTGCTGGGCTTGTC CACAGCTACCTCATTACTCG this study 

LMOf2365_0627 GGTATGACAGCAGGAATTGG GAGAATCCCTAATAACGCCG this study 

LMOf2365_0766 AACTGCGATGACTGCTGCTG AGCAAGTACACCTGGAACGA this study 

glnA LMOf2365_1317 CGTCGCGATATTGTGCTTG TCCCTGCTAAGAAATGATAAG this study 

divIVA LMOf2365_2045 CTGCCGAAGAAGTGAAAGC GACGCTAATTCTGTTGCATC this study 

rpsJ LMOf2365_2606 AGGTGCTTCTGTATCTGGTC GCAAGTCTAAACGCATCAAGC this study 
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1 2 Fold Category and gene Products 3 P-value change 
Energy metabolism: 
Glycolysis/gluconeogenesis 
LMOf2365_0366 triosephosphate isomerase 1.86 <0.01 

Energy metabolism: Amino acids and 
amines 
LMOf2365_1641 D-amino acid aminotransferase 1.81 <0.01 

Energy metabolism: Pentose phosphate 
pathway 

6-phosphogluconate dehydrogenase, LMOf2365_1395 2.03 <0.01 decarboxylating 

Energy metabolism: Pyruvate 
dehydrogenase 

pyruvate dehydrogenase complex, E1 
LMOf2365_1074 component, pyruvate dehydrogenase beta 2.33 <0.01 

subunit 
Fatty acid and phospholipid metabolism: 
Biosynthesis 
LMOf2365_0368 dihydroxyacetone kinase 1.98 <0.01 

Amino acid biosynthesis 
LMOf2365_1317 glutamine synthetase, type I 3.42 <0.01 

chorismate mutase/phospho-2-dehydro-3-LMOf2365_1621 1.91 <0.01 deoxyheptonate aldolase 
Protein synthesis: Translation factors 
LMOf2365_2632 translation elongation factor Tu 1.76 <0.01 

translation elongation factor G LMOf2365_2633 1.86 <0.01 

Protein synthesis: Ribosomal proteins: 
synthesis and modification 
LMOf2365_0055 ribosomal protein S18 2.11 <0.01 
LMOf2365_0261 ribosomal protein L1 1.96 <0.01 
LMOf2365_1499 ribosomal protein S20 2.40 <0.01 
LMOf2365_1561 ribosomal protein L21 2.16 <0.01 
LMOf2365_1679 ribosomal protein S2 1.67 0.03 
LMOf2365_1814 ribosomal protein L19 1.92 <0.01 
LMOf2365_1824 ribosomal protein S16 2.92 <0.01 
LMOf2365_2602 ribosomal protein L2 2.13 <0.01 
LMOf2365_2603 ribosomal protein L23 1.93 <0.01 
LMOf2365_2605 ribosomal protein L3 1.91 <0.01 
LMOf2365_2606 ribosomal protein S10 2.76 <0.01 
LMOf2365_2634 ribosomal protein S7 3.03 <0.01 
LMOf2365_2635 ribosomal protein S12 1.88 <0.01 

Table 3.2 The up-regulated genes of L. monocytogenes F2365 grown on RTE Turkey 
deli meat as compared to growth of the same strain on BHI agar plates using 
cDNA microarray analysis 
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Table 3.2 (continued) 

1Category and gene

Transport and binding proteins: 
Carbohydrates, organic alcohols, and 
acids 
LMOf2365_1023 
LMOf2365_1264 

2Products

phosphocarrier protein HPr 
putative transporter 

Fold 
3change

1.63 
2.51 

P-value 

0.01 
<0.01 

Transport and binding proteins: 
Nucleosides, purines and pyrimidines 
LMOf2365_1867 uracil permease 2.10 0.03 

DNA metabolism: DNA replication, 
recombination, and repair 
LMOf2365_0054 single-strand binding protein 1.74 0.01 

Cellular processes: Cell division 
LMOf2365_2045 cell division protein DivIVA 2.13 <0.01 

Purines and pyrimidine ribonucleotide 
biosynthesis 
LMOf2365_1864 

LMOf2365_1865 

LMOf2365_2746 

carbamoyl-phosphate synthase, small 
subunit 
dihydroorotase, multifunctional complex 
type 
inosine-5-monophosphate dehydrogenase 

2.00 

1.69 

2.23 

<0.01 

<0.01 

<0.01 

Regulatory functions: RNA interactions 
LMOf2365_1868 pyrimidine operon regulatory protein PyrR 1.78 0.01 

Hypothetical proteins: Conserved 
LMOf2365_0369 
LMOf2365_0371 
LMOf2365_0766 
LMOf2365_1823 

conserved hypothetical protein 
conserved hypothetical protein 
conserved hypothetical protein 
conserved hypothetical protein 

2.06 
2.42 
2.26 
2.37 

0.03 
<0.01 
<0.01 
<0.01 

Unknown function: General 
LMOf2365_0626 cyclic nucleotide-binding protein 
LMOf2365_0627 BioY family protein 
LMOf2365_2161 CAAX amino terminal protease family 

protein 
Unknown function: Enzymes of unknown 
specificity 
LMOf2365_1991 pyridine nucleotide-disulfide oxidoreductase 

family protein 

1.71 
2.78 
1.99 

1.84 

0.02 
<0.01 
<0.01 

0.01 

1, 2 The category for genes and products were based on annotations provided by TIGR. 
3 The fold differences indicate changes in the transcription of L. monocytogenes F2365 
grown on turkey deli meat as compared to growth of the same strain on BHI agar plates. 
The fold change was calculated by using delta-delta Ct method. 
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1   Category and gene  2 Products  Fold  3 P-value change  
     Transport and binding proteins: Cations      and iron carrying compounds  

 LMOf2365_1443   transporter, NRAMP family   -3.71  <0.01 

 LMOf2365_1875    ABC transporter, manganese-binding 
 protein   

 LMOf2365_1876   manganese ABC transporter, permease 
 protein -3.60   <0.01 

 LMOf2365_1877    manganese ABC transporter, ATP-binding 
 protein -2.85   <0.01 

 
     Transport and binding proteins: Amino    

   acids, peptides and amines  

 LMOf2365_0303   D-methionine ABC transporter, permease 
 protein -2.75   0.01 

 LMOf2365_0304   D-methionine ABC transporter, ATP-
 binding protein  -2.13   0.04 

 
    Transport and binding proteins:    

Unknown substrate  
 LMOf2365_1993   ABC transporter, permease protein  -2.05   0.01 

 
  Energy metabolism:    

Glycolysis/gluconeogenesis  

 LMOf2365_2429  phosphoglycerate mutase, 2,3-
bisphosphoglycerate-independent  -1.91   <0.01 

 LMOf2365_2430 triosephosphate isomerase  -2.07   <0.01 
 LMOf2365_2431 phosphoglycerate kinase  -1.93   <0.01 

 
  Biosynthesis of cofactors, prosthetic    

   groups, and carriers: Pyridoxine  
 LMOf2365_2133  pyridoxine biosynthesis protein  -4.32   <0.01 

 
  Biosynthesis of cofactors, prosthetic        groups, and carriers: Pantothenate and 

coenzyme A  
 LMOf2365_1929 aspartate 1-decarboxylase  -1.97   0.03 

 LMOf2365_1931 3-methyl-2-oxobutanoate 
hydroxymethyltransferase  -1.85   <0.01 

  Amino acid biosynthesis: Histidine family     
 LMOf2365_2134  glutamine amidotransferase, SNO family   -4.40  <0.01 

 
 DNA metabolism: DNA replication,    

 recombination, and repair  
 LMOf2365_1479   recombination protein O   -2.36  <0.01 
 LMOf2365_2461   excinuclease ABC, A subunit  -1.79   0.05 

Table 3.3 The down-regulated genes of L. monocytogenes F2365 grown on RTE 
turkey deli meat as compared to growth of the same strain on BHI agar 
plates using cDNA microarray analysis 
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Table 3.3 (continued) 

1Category and gene 2Products Fold 
3 P-value change

Transcription: Transcription factors 
LMOf2365_2434 putative RNA polymerase sigma-54 factor -1.87 <0.01 

Regulatory function: DNA interactions 
LMOf2365_0266 transcriptional regulator, DegA family -1.95 0.03 

Regulatory functions: Other 
LMOf2365_2433 putative transcriptional regulator -2.19 <0.01 

Cellular processes: Detoxification 
LMOf2365_1004 glutathione peroxidase -1.64 0.05 
LMOf2365_2224 arsC family protein -1.82 <0.01 
LMOf2365_2263 putative arsenate reductase -3.26 <0.01 

Cellular processes:Adaptations to 
atypical conditions 
LMOf2365_0544 universal stress protein family -1.86 0.02 

Cell envelope: Other 

LMOf2365_1826 cell wall surface anchor family protein, 
authentic frameshift -2.61 <0.01 

Central intermediary metabolism: Amino 
sugars 

LMOf2365_0976 N-acetylglucosamine-6-phosphate 
deacetylase -1.74 0.02 

LMOf2365_0977 glucosamine-6-phosphate isomerase -1.73 0.01 

Central intermediary metabolism: Sulfur 
metabolism 
LMOf2365_1532 carbon-sulfur lyase -1.73 <0.01 

Hypothetical proteins: Conserved 
LMOf2365_0200 conserved hypothetical protein -1.72 0.02 
LMOf2365_0235 conserved hypothetical protein -1.89 <0.01 
LMOf2365_0392 conserved hypothetical protein -2.08 <0.01 
LMOf2365_0393 conserved hypothetical protein -2.21 <0.01 
LMOf2365_0605 conserved hypothetical protein -2.00 0.02 
LMOf2365_0684 conserved hypothetical protein -1.83 <0.01 
LMOf2365_0817 conserved hypothetical protein -2.55 <0.01 
LMOf2365_0933 conserved hypothetical protein -1.92 0.01 
LMOf2365_0984 conserved hypothetical protein -2.17 0.02 
LMOf2365_1223 conserved hypothetical protein -2.15 <0.01 
LMOf2365_1442 conserved hypothetical protein -3.49 <0.01 
LMOf2365_2146 conserved hypothetical protein -1.89 <0.01 
LMOf2365_2166 conserved hypothetical protein -2.18 0.01 
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1   Category and gene  2 Products  Fold  3 P-value change  
Unknown function: General     

 LMOf2365_1598  CBS domain protein  -2.20   <0.01 
 LMOf2365_2223   MecA family protein  -2.12   <0.01 
 LMOf2365_2302   yhzC protein -2.03   0.03 

 
  Unknown function: Enzymes of unknown    

specificity  
 LMOf2365_0842   oxidoreductase, aldo/keto reductase family  -1.94   0.01 
 LMOf2365_1275  hydrolase, alpha/beta fold family  -1.78   0.03 

     
   

  
   

   
 

  

    

   
   
   
   
   
   
   
   
   
   

 
  

   
   

  

 

Table 3.3 (continued) 

1, 2 The category for genes and products were based on annotations provided by TIGR. 
3 The fold differences indicate changes in the transcription of L. monocytogenes F2365 
grown on turkey deli meat as compared to growth of the same strain on BHI agar plates. 
The fold change was calculated by using delta-delta Ct method. 

Table 3.4 Validation of microarray data by quantitative real-time polymerase chain 
reaction 

Fold change 1 

Locus 2cDNA microarray 3qRT-PCR 

LMOf2365_0627 2.78 3.90 
LMOf2365_0766 2.26 1.31 
LMOf2365_1317 3.42 8.54 
LMOf2365_1443 -3.71 -1.47 
LMOf2365_1826 -2.61 -5.96 
LMOf2365_1876 -3.60 -2.10 
LMOf2365_2045 2.13 4.31 
LMOf2365_2133 -4.32 -3.53 
LMOf2365_2134 -4.40 -4.64 
LMOf2365_2606 2.76 3.50 
1 The fold differences indicate changes in the transcription of L. monocytogenes F2365 
grown on turkey deli meat as compared to growth of the same strain on BHI agar plates. 
The fold change was calculated by using delta-delta Ct method. 
2, 3 Data were obtained from three independent experiments using quadruplicates RNA 
samples per experiment (n = 12). 
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Figure 3.1 The growth of L. monocytogenes strain F2365 on a turkey deli meat or BHI 
agar at 15°C. 

Data were obtained from two independent experiments using quadruplicate samples per 
each experiment via plate counts at different time points (n = 8). 
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CHAPTER IV 

GLOBAL GENE EXPRESSION OFLISTERIA MONOCYTOENES TO SALT STRESS2 

4.1 Abstract 

Outbreaks of listeriosis caused by the ingestion of Listeria-contaminated ready-to-

eat (RTE) foods have been reported worldwide. Many RTE foods, such as deli meat 

products, contain high amounts of salt, which can disrupt the maintenance of osmotic 

balance within bacterial cells. To understand how L. monocytogenes adapts to salt stress, 

we examined the growth and global gene expression profiles of L. monocytogenes strain 

F2365 under salt stress using oligonucleotide probe-based DNA array and quantitative 

real-time PCR (qRT-PCR) analyses. The growth of L. monocytogenes in Brain Heart 

Infusion (BHI) medium with various concentrations of NaCl (2.5, 5, and 10%) was 

significantly inhibited (P < 0.01) when compared to growth in BHI with no NaCl 

supplementation. Microarray data indicated that growth in BHI medium with 1.2% NaCl 

up-regulated four genes and down-regulated 24 genes in L. monocytogenes, which were 

confirmed by qRT-PCR. The transcript levels of genes involved in the uptake of glycine 

betaine/L-proline were increased, whereas genes associated with a putative 

phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), metabolic 

enzymes, and virulence factor were down-regulated. Specifically, the transcription levels 

of PTS transport genes were shown to be dependent on NaCl concentration. To further 

2 Reprint with permission (Appendix) from Bae, D., C. Liu, T. Zhang, M. Jones, S. N. Peterson, and C. 

Wang. 2012. Global Gene Expression of Listeria monocytogenes to Salt Stress. J Food Prot, in press. 
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examine if the down-regulation of PTS genes is related to decreased cell growth, the 

transcript levels of genes encoding components of Enzyme II, involved in the uptake of 

various sugars used as the primary carbon source in bacteria, were also measured using 

qRT-PCR. Our results suggest that the decreased transcript levels of PTS genes may be 

caused by salt stress or reduced cell growth through salt stress. Here, we report global 

transcriptional profiles of L. monocytogenes in response to salt stress, contributing to an 

improved understanding of osmotolerance in this bacterium. 

4.2 Introduction 

The gram-positive bacterium L. monocytogenes is a widely-distributed pathogen 

that causes listeriosis. A recent paper has reported that the hospitalization and mortality 

rates caused by the food-borne pathogen in the United States reached 94% and 15.9%, 

respectively (25). L. monocytogenes severely affects neonates, pregnant women, elderly 

men, and immunocompromised patients, often resulting in stillbirths, abortions, 

meningitis, septicemia, and encephalitis secondary to the initial listeriosis infection (13, 

32). This pathogen can withstand extreme conditions, including high acidity, low 

temperature, high osmolarity, low energy status, oxidative stress, high hydrostatic 

pressure, and antibacterial agents (5, 6, 26, 35). 

In the food industry, salt is often used as a general preservative and an 

antibacterial agent because of its inhibitory effects on bacterial growth in ready-to-eat 

(RTE) meat, seafood, and fermented foods (8). In addition, salt has been considered an 

essential additive to enhance flavor, texture, and shelf-life of meat products (24). Salt can 

cause damage to bacterial cells by disrupting their osmotic balance between the 

cytoplasmic and extracellular environments (7). Specific changes in cellular morphology 
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and gene expression resulting from the adaption of L. monocytogenes to osmotic stress 

have been documented (29). L. monocytogenes can mediate the change in expression of 

transporter genes such as betL, the gbu operon, and the opuC operon, which encode 

proteins involved in the transport of glycine, betaine, and carnitine, in order to adapt to 

osmotic stress (1). In addition, RelA, HtrA, KdpE, LisRK, ProBA, BtlA, and Ctc, 

proteins potentially involved in osmotic stress resistance, have been identified in L. 

monocytogenes under conditions of high osmolarity (3, 4, 9, 20, 28, 30, 37). 

The mechanism by which L. monocytogenes adapts to osmotic stress is not fully 

understood. Because RTE deli meat products typically contain a 1.2% salt concentration, 

we used this concentration in our microarray experiments to examine the global gene 

regulation of L. monocytogenes under salt stress condition. In addition, to better 

understand the molecular mechanism by which L. monocytogenes adapts to salt stress, we 

analyzed the growth levels of L. monocytogenes strain F2365 at various NaCl 

concentrations. The objective of this study was to compare differential gene expression 

profiles of L. monocytogenes grown under normal and high salt stress conditions in order 

to identify genes that allow this bacterium to persist in 1.2% NaCl concentration typically 

found in RTE foods. 

4.3 Materials and methods 

4.3.1 Bacterial strain and cultivation 

L. monocytogenes serotype 4b strain F2365 frozen in Brain Heart Infusion (BHI) 

broth (Difco Laboratories, Detroit, MI) with 20% glycerol at -80°C was used. Fifty 

microliters of the F2365 frozen stocks were inoculated in 5 ml of BHI broth. The culture 

was then incubated at 37°C overnight (18 h) as previously described (19). Twenty-five 

48 



www.manaraa.com

 

 

   

 

  

 

  

 

 

 

  

 

 

  

   

  

 

   

    

 

 

microliters of the activated bacterial culture (approx. 7.3 × 106 CFU/ml) were inoculated 

in 5 ml of fresh BHI broth with or without the addition of 1.2% NaCl and incubated at 

37°C for 6 h in the MaxQ 4000 orbital shaker (Barnstead/Lab-Line, Dubuque, IA) at 180 

rpm until the O.D. reached A600 ≈ 0.7 for microarray analysis. To evaluate cell growth, 

the A600 value was measured after 2, 4, 8, 16, and 24 h of incubation. In addition, CFUs 

were counted at 2, 4, 8, 16, and 24 h after incubation by plate counts to generate a 

bacterial growth curve. Data from each time point (two independent experiments 

performed in quadruplicate) were subjected to an analysis of variance (ANOVA) using 

SAS 9.1.3 (SAS Institute, Cary, NC). For qRT-PCR to measure the transcription levels 

of PTS genes (LMOf2365_1038, LMOf2365_0442, LMOf2365_0115, and 

LMOf2365_0938), twenty-five microliters of the bacterial culture (about 5.9 × 106 

CFU/ml) were inoculated in 5 ml of BHI medium with 2.5, 5.0, and 10.0% NaCl or 

without NaCl and incubated at 37°C with shaking at 180 rpm. Finally, bacterial cells 

were collected at 6 h after incubation. 

4.3.2 RNA isolation and measurement 

RNA Protect (Qiagen, Valencia, CA) was added to bacterial cultures at a ratio of 

2:1 (v/v). The mixture was incubated for 10 min at RT and centrifuged at 7,000 × g for 10 

min at 4°C. Total RNA was extracted from the bacterial pellet as follows: the cell pellet 

resuspended with Trizol (Invitrogen, Carlsbad, CA) and 1 ml of the resulting solution 

was transferred to a Lysing Matrix B tube (MP Biomedicals, Solon, Ohio), disrupted by 

shaking for 5 min using the Disruptor Genie (Scientific Industries, Inc., Bohemia, NY), 

and incubated at RT for 10 min. Total RNA was then extracted and purified using the 

RNeasy Mini Kit (Qiagen). The purity and concentration of RNA was determined using 
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the Agilent 2100 bioanalyzer (Agilent Technologies, Wilmington, DE) and a Nanodrop 

ND1000 UV-Vis spectrophotometer (Nanodrop Technologies, Wilmington, DE). RNA 

Integrity Numbers of all RNA samples were greater than 8.0, and the range of the OD 

ratios at A260/A280 nm and A260/230 nm were between 1.8 and 2.1. 

4.3.3 Microarray assay 

Aminoallyl (aa)-labeled L. monocytogenes serotype 4b strain F2365 microarray 

slides (Version 3) were provided by the Pathogen Functional Genomics Resource Center 

(PFGRC). The slides consist of spots containing 70-mer oligonucleotides probe that 

represents 2847 open reading frames (ORFs) in the L. monocytogenes (GenBank 

Accession no. AE017262). cDNAs were synthesized from the purified L. monocytogenes 

RNA using a slightly modified microarray protocol provided by the Institute for Genomic 

Research (TIGR) [http://pfgrc.jcvi.org/index.php/microarray/protocols.html]. Briefly,2.5 

μg of RNA was reverse transcribed using 2 μl of Smart reverse transcriptase (Clontech, 

Palo Alto, CA), 1 μl of random hexamers in the presence of 0.1 M dithiothreitol (DTT, 

Invitrogen), and a 25 mM dNTPs containing a 3:2 ratio of aa-dUTP and dTTP (Ambion, 

Austin, TX). The mixture was incubated overnight at 42°C. The resulting cDNA was 

purified, and unincorporated aa-dUTP was removed using a MinElute PCR purification 

kit (Qiagen) following the manufacturer’s instructions. The cDNA purification, labeling, 

and reading were carried out as described by Bae et al. (2). 

4.3.4 Microarray data analysis 

The hybridized slides were scanned at 10 μm resolution within the range of the 

photomultiplier tube between 650 and 750 on two channels using a GenePix 4000B 

microarray scanner (Axon Instruments, Union City, CA). The TM4 including Spotfinder, 
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Ginkgo and Magnolia softwares developed by TIGR was used. Image files from the 

slides were analyzed using the Spotfinder. The signal intensity of spots on the slides was 

adjusted and quantified by background subtraction, and data normalization was 

performed using Ginkgo. Magnolia 1.2, which exports the data in SOFT format, was used 

for depositing data into the Gene Expression Omnibus (GEO). The data from the 

normalized ratio of query to reference signal for each spot were transformed to a log2 

scale. Data were obtained from three biological replicates with four technical replicates 

(n = 12). Each independent experiment included a set of flip dye assays to observe dye 

bias during cDNAs labeling. The means of each gene on the 12 slides were transformed 

to log2 scale, and the log2 ratio for each gene was analyzed by the Student’s t-test. 

Differences of ≥ 2-fold changes in gene expression levels were considered significant (P 

< 0.05). An annotation file provided by TIGR was used 

(ftp://ftp.jcvi.org/pub/data/PFGRC/MAIN/microarray/annotation/L_monocytogenes/versi 

on3/L_monocytogenes_3_4b_F2365.ann). The microarray data are available at 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19570. 

4.3.5 Quantitative real-time reverse transcription PCR 

To confirm the microarray data, LMOf2365_0914, LMOf2365_2479, 

LMOf2365_2694, and several significantly up- and down-regulated genes were selected 

for qRT-PCR analysis. For qRT-PCR to measure the transcription levels of PTS genes, 

LMOf2365_1038, LMOf2365_0442, LMOf2365_0115, and LMOf2365_0938 were also 

used to investigate a correlation between the growth and the transcription levels of PTS 

genes of L. monocytogenes. Primers were designed using Gene Runner software 

(http://www.generunner.net/) and purchased from MWG Biotech Inc. (Huntsville, AL). 
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Primer sequences for target genes are shown in Table 4.1. The cDNA was synthesized 

from 1 g of the same RNA samples. Reverse transcription PCR was performed using 

Taq Man Reverse Transcription Reagents with random hexamers (Applied Biosystems, 

Foster City, CA) according to the manufacturer’s instructions. The cDNA concentration 

was quantified by measuring OD at A260 nm with ssDNA-33 option using a Nanodrop 

spectrophotometer (Nanodrop Technologies). qRT-PCR was performed with the Power 

SYBR Green PCR Master Mix (Applied Biosystems) by the manufacturer’s instructions. 

Approximately 100 ng of cDNA, 1X SYBR Green master mix, and 250 nM of forward 

and reverse primers were used in 25 l final volume for qRT-PCR. Amplification was 

performed as follows: initial incubation for 10 min at 95°C, followed by 40 cycles of 

95°C for 15 sec, 55-60°C for 30 sec, and 72°C for 30 sec for PCR. mRNA expression 

levels were determined using the average Ct values of gap and tuf as internal controls to 

normalize gene expression (33, 36). Data were analyzed by ANOVA followed by a 

Tukey test. Three and two independent experiments using quadruplicate RNA samples 

were conducted for validating microarray data and measuring mRNA expression levels of 

PTS genes, respectively. The correlation coefficient (R) between data from the 

microarray and qRT-PCR experiments was analyzed using SAS 9.1.3. 

4.4 Results 

The differential global gene expression levels of L. monocytogenes in response to 

salt stress were examined in the cells grown in BHI medium or in BHI supplemented 

with 1.2% NaCl. Based on microarray data, four genes were up-regulated and 24 genes 

were down-regulated in L. monocytogenes grown in medium supplemented with 1.2% 

NaCl. These genes were grouped into predicted functional categories according to the 
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annotation of L. monocytogenes strain F2365 provided by TIGR. To validate the 

microarray analysis, qRT-PCR was performed for several genes significantly up- or 

down-regulated, as well as those that remained unchanged (Table 4.1). The correlation 

coefficient between qRT-PCR and microarray analysis was found to be R = 0.92 (Figure 

4.1), suggesting that the microarray analysis was valid. 

Results show that the transcript levels of LMOf2365_1035, LMOf2365_1036, 

and LMOf2365_1037, loci associated with the uptake of glycine betaine, were up-

regulated at 2.82-, 2.64-, and 2.31-fold, respectively in the presence of 1.2% NaCl (Table 

4.2). Twenty-four down-regulated genes in L. monocytogenes grown under the salt stress 

condition are shown in Table 3.3. At least seven of these down-regulated genes 

(LMOf2365_0420, LMOf2365_0440, LMOf2365_0442, LMOf2365_0444, 

LMOf2365_0937, LMOf2365_2645, and LMOf2365_2647) are associated with a 

phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), 

LMOf2365_0421, LMOf2365_0445, and LMOf2365_0939, loci involved in the 

biosynthesis and degradation of polysaccharides for energy metabolism, were also down-

regulated. The proteins encoded by LMOf2365_0421, LMOf2365_0445, and 

LMOf2365_0939 were classified in glycosyl hydrolase family 38 or as a -glucosidase 

that catalyzes the cleavage of glucosidic bonds in -D-glucosides. Transcript levels of 

LMOf2365_2644, associated with fermentation, were also down-regulated. Interestingly, 

the transcript level of LMOf2365_0282 (inlD) encoding internalin D associated with 

pathogenesis was decreased. The transcripts for LMOf2365_1147, LMOf2365_2096, 

LMOf2365_2097, and LMOf2365_2618 encoding conserved hypothetical proteins were 

significantly down-regulated. LMOf2365_0422 containing a PTS regulatory domain 

(PRD/PTS system IIA 2 domain protein), LMOf2365_2648 (PTS system IIA 2 domain 
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protein), LMOf2365_2620 (phosphotriesterase family protein), and LMOf2365_2788 

(similar to dehydrogenase) were also down-regulated. However, the functions of these 

proteins or the putative enzymes are still unknown. 

The growth of L. monocytogenes in media with various concentrations of NaCl 

(2.5, 5, and 10%) was significantly inhibited (P < 0.01, ANOVA) [Figure 3.2]. Along 

with reduced cell growth, the decreased transcript levels of PTS genes, LMOf2365_1038, 

LMOf2365_0442, LMOf2365_0115, and LMOf2365_0938, encoding Enzyme II 

cytoplasmic subunits for the transport of major carbon sources (glucose, fructose, 

mannose, and cellobiose) are shown in Figure 3.3. The relative transcriptional levels of 

the PTS genes (except LMOf2365_0115) were shown to be salt-concentration dependent. 

4.5 Discussion 

Salt can be used to inhibit bacterial growth or enhance the flavor, texture, and 

shelf-life of food products. However, L. monocytogenes has the ability to adapt to 

osmotic stress by modulating transcription levels of transporter genes such as betL, gbu, 

and the opuC operons (1, 11, 14). Other studies also revealed that osmotic stress induces 

elevated uptake of glycine betaine in L. monocytogenes by the activation of the Gbu 

porter (14, 18). According to our microarray data, the transcripts of LMOf2365_1035 

(glycine betaine/L-proline ABC transporter, ATP-binding protein), LMOf2365_1036 

(glycine betaine ABC transporters, permease), and LMOf2365_1037 (glycine betaine/L-

proline ABC transporter, glycine betaine/L-proline-binding protein) associated with the 

uptake of glycine betaine were up-regulated under 1.2% salt stress condition (Table 3.2). 

The data indicate that these up-regulated transporter genes may be involved in the 

osmotolerance of L. monocytogenes grown in medium with 1.2% NaCl, a common salt 
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concentration found in many RTE foods. In general, a transcriptional or phenotypic 

response of L. monocytogenes exposed to 1.2% salt in BHI broth (liquid) or on RTE deli 

meat (solid phase) would be different. Therefore, a fixed concentration of salt used in 

BHI medium would be required to consider when translating this to an experiment on 

RTE deli meat regarding a response difference of L. monocytogenes by different physical 

phases. 

We also found that many genes down-regulated during osmotic stress are 

associated with PTS components, metabolic enzymes, and transport and binding proteins 

(Table 3.3). Specifically, several of the down-regulated genes identified in this study 

(LMOf2365_0420, LMOf2365_0440, LMOf2365_0442, LMOf2365_0444, 

LMOf2365_0937, LMOf2365_2645, and LMOf2365_2647) are associated with the PTS 

pathway, which is involved in the transport and phosphorylation of sugars as carbon 

sources, such as glucose, mannose, and cellobiose (10, 15, 21, 23). Therefore, PTS is an 

important and distinct means for extracellular sugar uptake using energy from 

phosphoenopyruvate. The system includes cytoplasmic components and membrane-

integrated proteins, enzyme I (EI), histidine protein (HPr), and enzyme II (EII). The PTS 

is a complex system that can be controlled by signal transduction, metabolic status, or the 

phosphorylation status of various PTS components (34). In both our microarray and qRT-

PCR data, the transcript level of ptsH was not significantly decreased, but the 

transcription level of ptsH tended to be down-regulated in response to NaCl 

concentration. Marr et al. (17) demonstrated that PTS activity was decreased by the 

overexpression of prfA in L. monocytogenes grown in glucose-supplemented minimal 

medium, suggesting that prfA, a transcriptional regulator in virulence, interferes with 

PTS-dependent sugar uptake and carbon source availability. Other groups also 
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demonstrated that down-regulation of prfA was observed in L. monocytogenes grown in 

the presence of PTS sugars (12, 31). These studies showed growth changes resulting from 

an interaction between PTS and prfA activities. However, our data showed no such 

correlation between PTS and prfA gene expression levels. 

The growth of L. monocytogenes was significantly inhibited when incubated in 

media with various concentrations of NaCl, as indicated in Figure 4.2. Genes encoding 

proteins associated with the pathways for -glucosides (LMOf2365_0030), galactitol 

(LMOf2365_2645, LMOf2365_2647), and a putative sugar (LMOf2365_0440) uptake as 

well as transporters for the uptake of fructose (LMOf2365_0444), cellobiose 

(LMOf2365_0937), and an unknown substrate (LMOf2365_2807) were significantly 

down-regulated with other decreased transcripts of PTS genes (Table 4.3). These data led 

us to determine if the down-regulation of PTS genes is related to decreased cell growth. 

Thus, we examined bacterial cell growth using BHI containing various NaCl 

concentrations and measured transcription levels of genes encoding components of EII 

involved in the uptake of glucose, fructose, mannose, and cellobiose used as the primary 

carbon source in bacteria by qRT-PCR. Interestingly, our results indicated that the 

transcription levels of PTS transport genes (LMOf2365_1038, LMOf2365_0442, and 

LMOf2365_0938 except LMOf2365_0115) were dependent on NaCl concentration 

(Figure 4.3). Along with decreased cell growth under high salt concentration, the 

decreased transcript levels of PTS genes may imply that salt stress may inhibit L. 

monocytogenes growth by modulating the expression of PTS components and transport 

genes, resulting in the decreased carbohydrate uptake and availability. In addition, our 

data indicate that only LMOf2365_1038 among the PTS genes seemed to be cell growth-

dependent regarding a changes of the expression of PTS genes by reduced cell growth. 
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The transcript of the gene was steadily increased during log growth phases. The data 

suggest that down-regulation of PTS genes in L. monocytogenes under salt stress can be 

caused by an effect of reduced cell growth through salt stress. 

L. monocytogenes can invade non-phagocytic cells using surface proteins called 

internalins. inlA and inlB play major roles in the entry into host cells (16, 27). Our 

microarray data showed that the transcription of inlD (-2.34-fold) but not inlA (-1.66-

fold) and inlB (-0.76-fold) was significantly reduced by osmotic stress; however, the 

function of inlD associated with intracellular infection of human host cells is still unclear. 

We also examined changes in virulence factor transcripts of L. monocytogenes in 

response to salt stress. There were no significant changes in the transcription levels of 

prfA, sigB, inlA, inlB, plcA, plcB, actA, or hly. To our knowledge, this is the first report 

detailing the effects of salt stress on the expression of genes involved in PTS and its 

related metabolic enzymes in L. monocytogenes. Data from this study may provide aid in 

determining the mechanism of osmotolerance in L. monocytogenes under conditions 

typically present in RTE foods. Further studies into the inhibitory effects of high salt 

concentrations against L. monocytogenes are needed to elucidate the potential 

relationship between salt stress and the functions of various PTS pathway components. 

4.6 Acknowledgments 

This work was supported by grants from USDA/ARS (#58-6402-7-230) and the 

Mississippi Agriculture and Forestry Experiment Station. We thank Dr. Michael Crowley 

for assistance with scanning images, Dr. Jerry Li for data analysis, and Dr. Stephen Pruett 

for his valuable review and suggestions. 

57 



www.manaraa.com

 

 

    

Gene  Locus   Forward Primer   (5’ 3’) Reverse  Primer   (5’ 3’) References  

 tuf  LMOf2365_2632 CTGAAGCTGGCGACAACA  CTTGACCACGTTGGATATCTTCAC  (36)  

 gap  LMOf2365_2432  ACCAGTGTAAGCGTGAA TCACAGCGCAAGACAAA  (33)  

 sigB  LMOf2365_0914  TCATCGGTGTCACGGAAGAA TGACGTTGGATTCTAGACAC    this study 

 InlD  LMOf2365_0282  GCTGGTATGATGCGAAAACT  CGTTGTTGGGTCTCATTGGA   this study 

 gbuB  LMOf2365_1036 TGGTATTTGGATGGCGAA  CAATTACGACCATGGAAAGT    this study 

ftsX   LMOf2365_2479 TGTTTGTGTGGGCTCTTTAG  ATTTAGGACTGTAGGAAGAC    this study 

  LMOf2365_1035  TTGAAAAAGATGGTCCTCG ATCTTCGGTTACAGCAATCG    this study 

  LMOf2365_0440  ACAACTCCGATGATAACAGC TGGGGACTTCGATTAGCG    this study 

  LMOf2365_0442 GAAGAAATGGCAGAAATG  GTCAGAATCAGTAATCGCCA    this study 

  LMOf2365_2694  ATCAGTTAATGTTGCGGTG CATTCTCATTGGCAGCA    this study 

  LMOf2365_2644  ATAATGCAAAGTCGCCCGCT AAAGATCAAGTTCGTGTCG    this study 

  LMOf2365_1038  GGCTTAGAAACCGTATCCTT CCTGCTTCTGCCTTAGTTAC    this study 

  LMOf2365_0115 GCAGAAGTTGATGATGTAGCAAGCCGAATTCTTGTGTATACC    this study 

  LMOf2365_0938  ACGCAAGAAATGACCTAGTG GCTGTCATGAGTGTATCTTG    this study 

Table 4.1 Quantitative real time RT-PCR primers used in salt study 
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1   Category and gene   Products 2  Fold 
 change 3   P-value 

    Transport and binding proteins:         Amino acids, peptides and amines     

 LMOf2365_1035  glycine betaine/L-proline ABC transporter,   
  ATP-binding protein   2.82  <.001 

 LMOf2365_1036     highly similar to glycine betaine ABC  
 transporters (permease)    2.64  0.001 

 LMOf2365_1037  glycine betaine/L-proline ABC transporter,  
  glycine betaine/L-proline-binding protein   2.31  0.017 

 
  Protein synthesis: Ribosomal  proteins:    

  synthesis and modification  

 LMOf2365_2602  ribosomal protein L2   2.32  0.003 
    
   

 

Table 4.2 Classification of up-regulated genes of L. monocytogenes strain F2365 
grown in BHI medium with 1.2% NaCl 

1, 2 Category for genes and products are based on annotations provided by TIGR. 
3 The fold change was calculated by using delta-delta Ct method. Data were obtained 
from three independent experiments using quadruplicate RNA samples (n = 12). 
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1   Category and gene   Products 2  Fold 
 change 3   P-value 

   Energy metabolism: Biosynthesis and     degradation of polysaccharides  
 LMOf2365_0421  glycosyl hydrolase, family 38  -3.21   <.001 
 LMOf2365_0445  glycosyl hydrolase, family 38  -3.49   <.001 
 LMOf2365_0939 -glucosidase  -3.23   <.001 

 

   Energy metabolism: Fermentation    
 LMOf2365_2644  alcohol dehydrogenase, zinc-dependent  -2.93   <.001 

 

     Energy metabolism: Amino acids and    
amines  

 LMOf2365_2619 putative creatinine amidohydrolase  -2.68   0.017 
 

    Transport and binding proteins: 
  Carbohydrates, organic alcohols, and    

acids  

 LMOf2365_0030    similar to PTS system, -glucosides 
 specific enzyme IIABC component  -3.12   <.001 

 LMOf2365_0420   PTS system, IIABC component, degenerate  -2.96   <.001 

 LMOf2365_0440     similar to Staphylococcus xylosus glucose 
uptake protein  -2.74   <.001 

 LMOf2365_0442   PTS system, fructose-specific, IIA -3.18   <.001 component  

 LMOf2365_0444    PTS system, fructose-specific, IIC -3.17   <.001 component  
 LMOf2365_0937   PTS system, IIC component  -2.87   <.001 

 LMOf2365_2645    similar to PTS system galactitol-specific 
 enzyme IIC component  -2.83   <.001 

 LMOf2365_2647   PTS system, IIA component  -3.00   <.001 
 

    Transport and binding proteins:    
Unknown substrate  

 LMOf2365_2807    major facilitator family transporter  -2.55   0.027 
 

  Protein fate: Degradation of proteins,     
 peptides, and glycopeptides  

 LMOf2365_2808 putative carboxypeptidase  -3.84   <.001 
 

 Cellular processes: Pathogenesis     

 LMOf2365_0282  internalin D  -2.46   0.001 
 

 Hypothetical proteins: Conserved     

 LMOf2365_1147  conserved hypothetical protein  -2.41   0.004 
 LMOf2365_2096  conserved hypothetical protein  -2.66   <.001 
 LMOf2365_2097  conserved hypothetical protein  -2.31   0.001 
 LMOf2365_2618  conserved hypothetical protein  -2.80   0.007 

Table 4.3 Classification of down-regulated genes of L. monocytogenes strain F2365 
grown in BHI medium with 1.2% NaCl 
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Table 4.3 (continued) 

1Category and gene 2Products Fold 
3change P-value 

Unknown function: General 
LMOf2365_0422 
LMOf2365_2648 

PRD/PTS system IIA 2 domain protein 
PTS system IIA 2 domain protein 

-2.85 
-2.95 

<.001 
<.001 

Unknown function: Enzymes of 
unknown specificity 
LMOf2365_2620 
LMOf2365_2788 

phosphotriesterase family protein 
similar to dehydrogenase 

-2.82 
-2.96 

0.013 
<.001 

1, 2 Category for genes and products are based on annotations provided by TIGR. 
3 The fold change was calculated by using delta-delta Ct method. Data were obtained 
from three independent experiments using quadruplicate RNA samples (n = 12). 
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Figure 4.1 Validation of microarray analysis with quantitative real-time RT-PCR. 

The x-axis indicates the log2 ratio from the microarray analysis. Y-axis indicates the log2 
ratio from the qRT-PCR analysis. Data were obtained from three independent 
experiments using quadruplicate RNA samples per each experiment for microarray 
analysis (n = 12). 
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Figure 4.2 The growth of L. monocytogenes strain F2365 in BHI medium and the 
medium supplemented with 1.2, 2.5, 5, or 10% NaCl. 

Data were obtained from two independent experiments via plate counts at different time 
points (n = 8). Values represent the mean ± SEM. The growth of L. monocytogenes was 
significantly decreased by salt stress after 16 h incubation compared to all the other 
groups with various salt concentrations (P < 0.05, ANOVA). Each point represents P 
value(s) as indicated: a P < 0.05, control vs. 1.2% NaCl; bP < 0.05, control vs. 2.5% 
NaCl; cP < 0.05, control vs. 5.0% NaCl;d P < 0.05, control vs. 10.0% NaCl. 
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Figure 4.3 The ratio of mRNA expression level of PTS transport genes involved in 
sugar uptake. 

Cells were grown in BHI medium without NaCl (control) and with 2.5, 5, and 10% of 
NaCl. Bacterial cells were collected to extract total RNA at 6 h after incubation. 
LMOf2365_1038, LMOf2365_0442, LMOf2365_0115, and LMOf2365_0938 are 
components of EII involved in the uptake of glucose, fructose, mannose, and cellobiose, 
respectively. Values are expressed as fold change from the control (value 1.0). n = 8; bar 
= SEM. The symbol (*) represents that means are significantly different between groups 
(P < 0.05, ANOVA). 
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CHAPTER V 

A NOVEL GENE OF LISTERIA MONOCYTOENES, lcp, ASSOCIATED WITH 

ATTACHMENT TO VGEGETABLES AND FRUITS 

5.1 Abstract 

A study to determine factors involved in attachment of L. monocytogenes serotype 

4b strain F2365 (WT) to leafy vegetables and fruits was conducted. To evaluate candidate 

proteins involved in adhesion to lettuce leaf, 32 genes encoding surface proteins and 

lipases of the strain were screened using quantitative qRT-PCR. Among 32 genes, 

transcription levels of LMOf2365_0413, LMOf2365_0498, LMOf2365_0859, 

LMOf2365_2052, and LMOf2365_2812 were significantly up-regulated on lettuce leaf. 

In silico analysis showed that LMOf2365_0859 has a putative cellulose binding domain. 

Thus, we hypothesized that this gene may be involved in attachment to leafy vegetables 

and named the gene Listeria Cellulose-binding Protein (LCP). lcp mutant (Δlcp) and lcp 

complement (Δlcp+pMAD_lcp) strains were generated using homologous recombination 

events. The attachment of WT, Δlcp, and Δlcp+pMAD_lcp on lettuce leaves was 

determined. Results showed that the attachment of WT to lettuce was significantly higher 

than Δlcp. The attachment of the complement strain was not significantly different from 

the WT. Similar results were observed in other fresh food such as baby spinach and 

cantaloupe. Fluorescence microscopy and field emission scanning microscopy analysis 

further support these findings. Binding ability to cellulose was determined by using 

cellulose acetate-coated plates. Results showed that a binding ability of Δlcp was 
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significantly lower than the WT. Therefore, these results strongly suggest that LCP plays 

an important role in its attachment ability to vegetables and fruits. Results of this study 

help us to understand the attachment mechanism by L. monocytogenes to vegetables and 

fruits. The information can contribute to the development of strategies in vegetables 

decontamination, preservation, or storage. 

5.2 Introduction 

L. monocytogenes is a life-threatening food borne pathogen that attributes to the 

highest rates in hospitalization (94.0%) and mortality (15.9%) among 31 pathogens 

including major food-borne pathogens, such as Salmonella, E. coli, Campylobacter, and 

Clostridium (32). L. monocytogenes is an opportunistic and zoonotic bacterium found in 

the natural environments and foods and it has an ability to survive under extreme 

conditions such as high acidity, low temperature, high osmolarity, and high hydrostatic 

pressure (2, 4, 14, 15). Epidemiologic studies on human listeriosis have shown that the 

various concentrations of L. monocytogenes were detected from RTE food products 

collected from patient’s refrigerators, retail stores, or plants (19). Most cases of human 

listeriosis have been linked to the consumption of RTE products contaminated with L. 

monocytogenes. L. monocytogenes serotypes 4b, 1/2a, and 1/2b of the 13 serotypes are 

mainly associated with human listeriosis outbreaks in susceptible individuals (25, 37). 

Numerous studies have been conducted on the adhesion, invasion, and/or virulence 

regulation of L. monocytogenes in animal hosts and their derived food products as 

vehicles of human listeriosis (6, 9, 10, 13, 17). However, studies on basic molecular 

mechanisms of L. monocytogenes attaching or adhering to RTE or vegetables are rather 

limited. Studies have shown the attachment of L. monocytogenes and Salmonella enterica 
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to intact or cut cabbage and lettuce leaves (18, 28). Therefore, the purpose of this study 

was to indentify genes associated with the attachment of L. monocytogenes on the leaf 

surface of raw vegetables and fruits. 

The pathogen has a multilayered cell wall linked to peptidoglycan, to which 

LPXTG surface proteins are anchored. Based on genomic and proteomic data analysis, 

more than 40 genes encoding surface or surface-anchored proteins, which interact with 

host tissues or cells are found in L. monocytogenes (8, 16, 26). In particular, the roles of 

virulence and surface proteins (i.e. SigB, PrfA, ActA, InlA, InlB, InlC, InlH, or LPXTG 

family) of L. monocytogenes on pathogenesis have been well characterized in different 

hosts and cell types (12, 22, 24, 30, 31, 35). These studies have demonstrated that L. 

monocytogenes utilizes a specific host-parasite interaction that is mediated by a specific 

interaction between listerial surface proteins (ligands) and host cell receptors. 

Currently, the consumption of fresh or minimally-processed vegetables has 

increased annually due to a change in diet habits (29). According to the Economic 

Research Service of United States Department of Agriculture (ERS/USDA) report in 

2004, the US per capita consumption of fresh vegetables has increased approximately 

51% from 52.0 kg in 1976 to 78.6 kg in 2003 (http://ucce.ucdavis.edu/files/datastore/234-

66.pdf). Survey and epidemiology studies reported that L. monocytogenes has been found 

in raw or minimally processed vegetables, such as cabbage, broccoli, bean sprouts, 

cucumber, lettuce, peppers, and potatoes in many countries (7). Moreover, outbreaks of 

human listeriosis associated with ingestion of shredded cabbage, diced celery, lettuce, 

and tomatoes contaminated with the pathogen has been reported (21, 33). It has been 

shown that L. monocytogenes can grow in vegetables stored at refrigerated temperatures 

(15). Other studies also demonstrated that vegetables (cabbage, lettuce, sprouts, etc.) can 
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be served as vehicles for human listeriosis due to ingestion of L. monocytogenes-

contaminated fresh vegetables or salads (1, 7, 21, 34). Recently, a deadly outbreak of 

human listeriosis led to 30 deaths and 1 miscarrage in a multi-state outbreak was caused 

by contaminated cantaloupes (http://www.cdc.gov/listeria/outbreaks/cantaloupes-jensen-

farms/index.html). 

Despite of the increase in consumption of vegetables and outbreaks of human 

listeriosis associated with the ingestion of vegetables and fruits, less is known about 

survival, growth, and virulence factors of L. monocytogenes on vegetables in comparison 

to meat products. Transcription of listerial surface proteins was found to be highly 

increased when L. monocytogenes was cultured on vegetables. Of interest, one of up-

regulated genes (LMOf2365_0859) contains a putative cellulose binding domain (CBD). 

We named this gene as Listeria Cellulose binding Protein (LCP) and investigated the role 

of LCP in attachment to vegetables and fruits. 

5.3 Materials and methods 

5.3.1 Bacterial strain and cultivation 

L. monocytogenes strain serotype 4b F2365 was grown and maintained in brain-

heart infusion (BHI) broth (Difco Laboratories, Detroit, MI) with 20% glycerol at -80°C 

until use. Thirty microliters of F2365 frozen stock was dispensed into 14 ml Polystyrene 

Round-Bottom Tube (BD Falcon, Franklin Lakes, NJ) containing 3 ml of BHI broth and 

were incubated at 37°C for overnight. Thirty microliters of the activated bacterial culture 

(approximately 1.0 × 106 CFU/ml) was added to 3 ml of a fresh BHI medium and 

incubated at 37°C for 16 h in a MaxQ™ 4000 incubating and orbital shaker 

(Barnstead/Lab-Line, Dubuque, IA) at 180 rpm. 
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5.3.2 Vegetables and fruit preparation 

Fresh iceberg lettuce heads, bagged baby spinach, and cantaloupes were 

purchased from a local retail grocery and stored at 4°C until used within 2 days after 

purchase. The adaxial side of about five inner iceberg lettuce and baby spinach leaves 

were used. The edge of leaves far from the stem was cut to an appropriate size (5 × 5 cm 

or 1 × 1 cm). Cantaloupe skin was cut (1 × 1 cm) into thin pieces. Cut vegetable leaves 

and cantaloupe skin were washed with sterile phosphate buffered saline (PBS, pH 7.4) 

[Invitrogen, Gland Island, NY] three times before inoculation. Washed vegetable leaves 

and cantaloupe skins used in this study were negative for bacterial culture. No 

contamination in the homogenized samples was found on a growth agar plate. 

5.3.3 Bacterial growth, collection, and RNA isolation 

Two-hundred microliters (1.55 × 107 CFU) of the overnight cultured inoculums 

was suspended in 5 ml of PBS (as a control) or spread on lettuce leaf (about 5 × 5 cm) 

using Whirl-Pak Bags (Nasco, Fort Atkinson, WI). The inoculated leaves or PBS 

containing bacteria were then incubated at 4°C up to 4 days. To determine the growth 

curve, bacterial numbers were enumerated at 0, 8, 16, 24, 48, 72, and 96 h after 

incubation via a standard plate count. To determine differential expressed genes encoding 

for surface proteins and lipases, bacterial cells were collected at 8 and 16 h. After 

incubation the lettuce leaves were gently washed with 25 ml of PBS. Supernatant 

containing unattached bacterial cells was discarded. Finally, lettuce leaves with attached 

listerial cells were vigorously washed with 25 ml of PBS using a Mini Vortex MixerTM 

(VWR, Radnor, PA). The bacterial suspension from the washed lettuce leaves or PBS 

control was mixed with RNA Protect® (Qiagen, Valencia, CA) at a ratio of 1:2 (bacterial 

suspension : RNA Protect). The mixtures were incubated for 10 min at RT and 
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centrifuged at 7,000 × g at 4°C for 10 min. Cells were resuspended using 1ml of TrizolTM 

(Invitrogen, Carlsbad, CA), transferred to Lysing Matrix B tube (MP Biomedicals, 

Germany), disrupted by shaking for 5 min using the Disruptor Genie® (Scientific 

Industries, Inc., Bohemia, NY), and incubated at RT for 10 min. Total RNA was 

extracted from the bacterial cell pellet according to Bae et al (5). The concentration of the 

RNA was measured using the Nanodrop®ND1000 UV-Vis spectrophotometer 

(Nonodrop Technologies, Wilmington, DE) and agarose gel electrophoresis. 

5.3.4 Quantitative real-time reverse transcription PCR for screening genes 

cDNAs were synthesized from 1g of total RNA samples from bacteria grown on 

lettuce leaves or control cells using a cDNA reverse transcription kit (Applied 

Biosystems, Foster City, CA). Then, about 100 ng of the cDNA was mixed with 1X 

Power SYBR® Green PCR Master Mix (Applied Biosystems) and 400 nM of forward 

and reverse primers in a final volume of 25 l and was amplified by PCR. The 

amplification was performed using a Mx3005P ™ Real-Time PCR System (Stratagene 

Inc., La Jolla, CA) with the mixture initially incubated at 95°C for 10 min, followed by 

40 cycles of 95°C for 30 sec, 60°C for 30 sec, and 72°C for 15 sec. gap was used as an 

internal control to normalize the expression rate of each gene. The relative mRNA 

expression levels of the target genes to gap were calculated by using delta-delta Ct 

method. The primer sequences of genes encoding the surface proteins and lipase of L. 

monocytogenes are shown in Table 5.1. Primers were designed using DNASTAR 

Lasergene 8 (DNASTAR, Inc., Madison, WI). 
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5.3.5 In silico analysis 

The protein domains of LMOf2365_0859 (accession no. Q721X5) were predicted 

using the National Center for Biotechnology Information (NCBI) 3D molecular structure 

database with the protein GenInfo Identifier (GI) no. 46907073. The prediction of the 

protein domains is available at http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi? 

ClustalW2 software provided from the European Molecular Biology Laboratory's 

European Bioinformatics Institute (EMBL-EBI) and ESPript 2.2 

(http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi) were used to align LCP amino acid 

sequences and a CBD of Endoglucanase D from Clostridium cellulovorans. 

5.3.6 Construction of LMOf2365_0859 (lcp; listerial cellulose binding protein) 
mutant 

A lcp deletion mutant (lcp) and a complemented strain were generated by allelic 

replacement as described previously (3). In brief, a selectable marker gene (cat; 

chloramphenicol acetyltransferase) was cloned from pMK4 using cat forward and reverse 

primers (catF and catR; Table 5.2) and inserted to pMAD (a temperature-sensitive 

integration vector) for the construction of pMAD_cat. Insert (cat) and vector (pMAD) 

were digested with SalI and EcoRI and ligated with T4 DNA ligase (NEB, Beverly, MA). 

The PCR products (about 1.0 kb) from adjacent 5′ and 3′ flanking regions of 

LMOf2365_0859 were amplified with the chromosomal DNA of F2365 using Taq 

polymerase (Applied Biosystems). The primer pairs, 0859UF and 0859UR and 0859DF 

and 0859DR were used for 5′ and 3′ flanking regions. The primers were designed using 

DNASTAR Lasergene 8 program (DNASTAR, Inc.) [Table 5.2]. The generated up- and 

down-DNA fragments were digested with restriction endonuclease pairs BamHI and SalI 

and EcoRI and BglII, respectively. pMAD_cat was also digested with the same restriction 
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enzymes. The digested DNA fragments were ligated with pMAD_cat digested using T4 

DNA ligase. pMAD_lcp harboring homologous DNA fragments of LMOf2365_cat were 

transformed into DH5he recombinant plasmid was extracted from DH5culture and 

then transformed into L. monocytogenes F2365 competent cells. The recombinant 

plasmid was first incorporated into the chromosome of F2365 by homologous 

recombination event. Colonies retaining the chromosome incorporated with the 

recombinant plasmid were grown at 42°C and selected on BHI agar plate containing 

chloramphenicol (10 g/ml). The F2365 harboring pMAD_lcp in it chromosome was 

subcultured at 30°C to screen for the lcp deletion mutants. The subcultures were plated 

on BHI agar plates containing erythromycin (5 g/ml) or chloramphenicol (10 g/ml). 

lcp mutant strain was selected by a phenotype showing chloramphenicol resistance and 

erythromycin susceptibility. The deletion mutant strain, Δlcp, was confirmed by PCR 

product (180 bp) amplification from genomic DNA using 0859F and 0859R primers 

designed from a deleted part of lcp nucleotide sequences (Table 5.2). Genomic DNA 

extraction was performed using the DNeasy Blood & Tissue Kit (Qiagen). The 

complementation of LMOf2365 deletion mutant (Δlcp+pMAD_lcp) was generated after 

first incorporation of the recombinant plasmid into the chromosome of F2365. 

5.3.7 Bacterial growth and field emission scanning electron microscopy (FESEM) 
analyses 

Bacterial cells were cultured as described previously. Bacterial cell growth of 

F2365 WT and Δlcp, and Δlcp+pMAD_lcp was determined. Thirty microliters of WT, 

Δlcp, and Δlcp+pMAD_lcp inoculums containing approximately 4.33 ± 0.18 log10 

bacterial cells were dispensed into 3 ml of BHI medium and incubated at 37°C for 24 h in 

a MaxQ™ 4000 incubating and orbital shaker (Barnstead/Lab-Line) at 180 rpm. Bacterial 
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cell numbers were determined at 2, 4, 8, 16, and 24 h after incubation using total plate 

counts. A field emission scanning electron microscope was used to visualize bacterial 

attachment on the leaves. Twenty microliters (approximately 1.0 × 106 CFU/ml) of L. 

monocytogenes WT, Δlcp, and Δlcp+pMAD_lcp were inoculated onto 1 × 1 cm pieces of 

lettuce leaves. After 2 hours incubation, the leaves were fixed in 2.5% glutaradehyde in 

0.1 M sodium cacodylate buffer pH 7.2 at 4°C. The fixed leaves were then rinsed, post 

fixed in 2% osmium tetraoxide in 0.1 M sodium cacodylate buffer, dehydrated in a 

graded ethanol series, and critical point dried using a Polaron Critical Point Dryer 

(Quorum Technologies, Newhaven UK). Dried specimens were mounted on aluminum 

stubs with carbon adhesive, and coated with platinum using an ES150T ES sputter coater 

(Electron Microscopy Sciences, Hatfield, PA). The attachment of WT, Δlcp, and 

Δlcp+pMAD_lcp strains was visualized using a JEOL JSM-6500F scanning electron 

microscope (JEOL USA, Peabody, MA) at 5kv. 

5.3.8 Adhesion to plant and fluorescence microscopy analysis 

F2365 WT (6.72, 6.80, and 5.54 log10/ml) and Δlcp (6.62, 6.73, and 5.65 

log10/ml), and Δlcp+pMAD_lcp (6.66, 6.76, and 5.86 log10/ml) bacterial cells were 

used for the attachment assay with lettuce leaf, spinach, and cantaloupe, respectively. 

Twenty microliters of inoculum of each of the strains were evenly placed on 1 × 1 cm 

squares of the leafy vegetables and cantaloupe skins and were incubated for 2 h at RT. 

The leaves and cantaloupe skin were washed twice with 25 ml of PBS using a Mini 

Vortex MixerTM (VWR). Supernatant containing unattached bacterial cells was discarded. 

To determine the number of attached bacteria, the inoculated lettuce, spinach leaves, and 

cantaloupe skins were homogenized using a mortar and pestle after washing. For the 
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detection of L. monocytogenes attached on the lettuce leaf, L. monocytogenes WT, Δlcp, 

and Δlcp+pMAD_lcp were labeled with 5-(and -6)-carboxy-fluorescein diacetate 

succinimidyl ester (CFSE) [Molecular Probes, Eugene, OR]. One ml of bacterial cultures 

was centrifuged at 7,000 × g for 5 min at RT. Cell pellet was resuspended with PBS and 

washed three times to remove BHI medium. Bacterial cells were then resuspended in 1 

ml of sterile PBS with CFSE dye to a final concentration of 5 nM and incubated at 37°C 

in darkness for 30 min. The CFSE-labeled bacterial cells were then washed three times 

with 1 ml of PBS. Twenty microliters of the CFSE-labeled cell (1 × 109 CFU/ml) 

suspensions were placed on lettuce leaves (1 × 1 cm) and incubated at RT in darkness for 

2 h. After incubation, the lettuce leaves were mounted with Vectashield® H-1400 

Mounting Medium (Vector Labs, Burlingame, CA) on a glass slides, and covered.  

CFSE-labeled bacterial cells were observed under a fluorescent microscope (Nickon, 

Tokyo, Japan) with FITC filter at 20× magnification. 

5.3.9 Adhesion to human cells 

Hep-G2 and Caco-2 cells were seeded to 24 well plates and incubated in a 37°C 

5% CO2 incubator. Mid-log phase L. monocytogenes was collected by centrifugation, 

washed twice with PBS, and resuspended with RPMI 1640 medium. Cells were infected 

with bacteria at multiplicity of infection of ~50:1 for 60 min. For adhesion assay, cells 

were washed five times with PBS and lysed with 0.2% Triton X-100. Cell lysate was 

diluted and plated on BHI agar to count the viable bacteria. 

5.3.10 Cellulose binding assay 

To identify a component of lettuce leave that interacts with LCP, the attachment 

of L. monocytogenes to cellulose acetate was measured using crystal violet staining. 
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Ninty-six-well plates (Nalge NuncInternational, Rochester, NY) were coated with 1% 

(w/v) cellulose acetate (Sigma- Aldrich, St. Louise, MO) dissolved in glacial acetic acid 

according to the method of Wierzba et al (37). Cellulose acetate-coated wells were 

washed with PBS twice using an orbital shaker (Lab-Line Instruments, Inc., Melrose 

Park, Illinois) prior to the binding assay. One hundred microliters of the inoculums of 

F2365 WT, Δlcp, and Δlcp+pMAD_lcp (about 1.0 × 107 CFU/ml) were then placed in a 

96 well coated plate and incubated for 16 h at RT. Bacterial cells unbound to cellulose 

acetate were carefully washed with PBS containing 0.05% Tween 20 (PBST) [Sigma-

Aldrich] three times using a 3-D rotator (Labline Instrument Inc., Melrose Park, IL, 

Model No. 4630). Bacterial cells attached to cellulose acetate were stained with 150 l of 

0.5% (w/v) crystal violet solution (BD Biosciences, Sparks, MD), incubated for 5 min at 

RT, and washed with PBST three times. The absorbance (OD) of each well was then 

measured at 590 nm using a SpectraMax M2 plate reader (Molecular Devices, Sunnyvale, 

CA). The difference in OD values was analyzed by ANOVA. 

5.3.11 Statistical Analysis 

All data were analyzed using SAS version 9.1.3 program (SAS Institute, Cary, 

NC). Data were obtained from three independent experiments using duplicate or triplicate 

bacterial samples per each experiment for the gene transcription level (n = 9), bacterial 

cell growth (n = 6), attachment assay (n = 9), and binding assay (n = 9). Data from real 

time RT-PCR to determine differential gene expression were analyzed using Student’s t-

test. Other data were analyzed using the procedures of analysis of variance (ANOVA). 

The statistical difference was considered significant at P < 0.05. 
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5.4 Results 

5.4.1 The growth of listerial cells on lettuce leaves 

The growth of F2365 on lettuce leaves or in PBS as a control was determined at 0, 

8, 16, 24, 48, 72, and 96 h after incubation at 4°C. The growth curve demonstrated that 

the number of the bacterial cells from lettuce leaves and PBS were maintained without an 

exponential increase throughout the incubation periods (Figure 5.1), suggesting that 

Listeria can survive or colonize lettuce leaf at refrigerated temperature. 

5.4.2 The transcription levels of genes encoding surface proteins and lipases and 
in silico analysis 

To identify transcriptional changes in response to an attachment of L. 

monocytogenes to vegetables, the transcription levels of 32 genes encoding listerial 

surface proteins and lipases were measured at 8 and 16 h after incubation using real-time 

qRT-PCR. Data showed that transcription of five genes (LMOf2365_0413, 

LMOf2365_0498, LMOf2365_2052, LMOf2365_0859, and LMOf2365_2812) was up-

regulated at 8 and 16 h time points (Figure 5.2). 

In silico analysis based on the database of molecular 3D structures provided by 

the NCBI demonstrated that LCP (2027 aa), one of the up-regulated genes, contains a 

putative CBD (at position 20-144 aa), 7 bacterial Ig-like domains (Big_3), and 

LPXTG motif (a conserved sorting signal domain at carboxyl-terminal) [Figure 5.3a]. 

The surface protein encoded by lcp has amino acid sequences similar to a CBD of 

Endoglucanase D in Clostridium cellulovorans, which bound to cellotriose. Cellotriose is 

a derivative of cellulose degraded by cellulase. The structure prediction of the protein is 

available at http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi? and the protein 

GenInfo Identifier (GI) number is 46907073. The amino acid sequence alignment was 
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generated from ClustalW2 (EMBL-EBI) and ESPript 2.2 softwares (Figure 5.3b). With 

these results, we hypothesized LMOf2365_0859 is involved in the interaction with 

cellulose and name this protein as a putative LCP. In addition, LCP of 4b strains has been 

shown to be a similar homology in other Listeria spp. (Figure 5.4). 

5.4.3 Growth of F2365 Δlcp strain 

The candidate gene, lcp, was selected based on the real time qRT-PCR data 

(Figure 5.2) and in silico analysis (Figure 5.3). In-frame lcp deletion mutant (Δlcp) was 

constructed (Figure 5.5) to determine the role of LCP in attachment to vegetables. Δlcp 

was confirmed using PCR with 0859F and 0859R primers (Table 5.2). The PCR product 

(180 bp) was not amplified from Δlcp (Figure 5.6a), indicating the success of in-frame 

deletion of LMOf2365_0859. First, we determined if Δlcp or Δlcp+pMAD_lcp was 

physiologically affected by the deletion of the target gene or the incorporation of the 

recombinant plasmid into F2365 via bacterial cell growth. Results showed that the 

growth kinetics for bacterial strains was not different (Figure 5.6b). Therefore, Δlcp or 

Δlcp+pMAD_lcp strains seemed not to be affected by the deletion of target gene or 

incorporation of pMAD containing the recombinant plasmid. 

5.4.4 The role of LCP in an attachment to lettuce leaves 

The most abundant components of plant cell walls are cellulose and pectin. We 

hypothesized that LCP might play an important role in attachment to vegetables due to 

the possession of a putative CBD. To test this possibility, fresh iceberg lettuce leaves 

were inoculated with 1  105 CFU/cm2 of WT, lcp, or Δlcp+pMAD_lcp strain. The 

result showed that % adherence by the WT strain (2.97% ± 0.37) was significantly higher 

than that by lcp (0.3% ± 0.05) [Figure 5.7a, P < 0.0001]. Δlcp+pMAD_lcp showed 
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similar % adherence (3.03% ± 0.14) to the WT strain. Consistent with bacterial count 

data, fluorescence microscope analysis using CFSE labeled bacteria showed an increased 

CFSE signal (green dots) in the WT strain, compared to the lcp deletion mutant strain. 

The complement strain showed a similar CFSE signal to a WT strain (Figure 5.7b). 

FESEM analysis showed that most bacteria were evenly attached to the surface of leaves 

(Figure 5.7c). We were not able to observe any preferential attachment sites in the leaves. 

Combined, these results strongly suggest that LCP is an important adherence factor to 

vegetable leaves. 

5.4.5 The role of LCP in an attachment to baby spinach and cantaloupe 

In order to determine if LCP is a generalized attachment factor of L. 

monocytogenes to plants, we tested listerial attachment to baby spinach and cantaloupe. 

The WT strain showed the percentage (%) attachment to baby spinach leaves was 

approximately 2× higher than that to iceberg lettuce, showing 6.62% ± 2.59. By contrast, 

the numbers of Δlcp attached was significantly lower than that of the WT strain, showing 

0.64% ± 0.13 (Figure 5.8a). Of interest, overall attachment of WT, Δlcp, and 

Δlcp+pMAD_lcp strains to cantaloupe skins was much higher than other vegetables, 

showing 19.17% ± 4.05, 3.25% ± 0.88, and 17.12% ± 2.59, respectively (Figure 5.8b). 

5.4.6 The role of LCP in an adherence to human cells 

To study the interaction between LCP and animal host cells, we evaluated the 

functions of LCP involved in adherence to several human endothelial (hepatocellular 

liver carcinoma cell line; HepG-2) and epithelial cell (colorectal adenocarcinoma cell 

line; Caco-2) types. The data demonstrated that Δlcp was significantly less attached to the 

host cells (decreased about 70%) when it was compared to the WT (Figrure 5.9). 
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5.4.7 The function of LCP involved in cellulose binding 

To determine if there is an interaction between LCP and cellulose, we used a 96-

well ELISA plate coated with 1% (w/v) cellulose acetate dissolved in glacial acetic acid. 

The WT, Δlcp, and Δlcp+pMAD_lcp strains were inoculated in each well, incubated at 

RT for 16 h, washed, and then stained with crystal violet. The OD for each plate was read 

at 590 nm. The OD values of F2365 WT (0.189 ± 0.014) and Δlcp+pMAD_lcp strain 

were significantly increased compared to Δlcp (0.110 ± 0.005) (Figure 5.10). These 

results suggest that LCP interacts with cellulose at acidic condition.    

In conclusion, we have shown that LMOf2365_0859 (lcp) has a putative CBD 

and was highly expressed on lettuce leaf. Based on the attachment, fluorescence, and 

binding assays, data have demonstrated that lcp can be one of the adherence factors that 

contribute attachment of L. monocytogenes to vegetable and fruit surfaces. 

5.5 Discussion 

Vegetables have been considered as vehicles to transmit L. monocytogenes to 

human because the presence of L. monocytogenes in vegetables is much higher than in 

other RTE food (7). Nevertheless, studies for the attachment or colonization of L. 

monocytogenes on RTE vegetable leaves at molecular level have been less studied. In the 

current study we hypothesized that a listerial surface protein or lipase is involved in 

attachment to leafy vegetables for their colonization. First, we selected 32 genes encoding 

surface proteins and lipases provided from the JCVI annotation. F2365 grown in PBS and 

on lettuce leaves for 8 and 16 h at 4°C was used to determine the transcription levels of 

the genes using real-time qRT-PCR. Five up-regualted genes generated from the real-

time qRT-PCR were used for in silico analysis to select a candidate gene involved in the 

interaction with a component (i.e., cellulose or pectin) of lettuce leaf. The Kyoto 
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Encyclopedia of Genes and Genomes (KEGG) database provides that lcp has 7 bacterial 

Ig-like domains (Big_3) and LPXTG motif (a conserved sorting signal domain at 

carboxyl-terminal). Many listerial surface proteins containing LPXTG motif have Big_3 

domains which may be involved in an interaction with carbohydrates on the surface of 

host cells (8). However, the role of Big_3 domain associated with the interaction with 

carbohydrates is still unclear. Interestingly, using the NCBI CBLAST module, we found 

that LCP has a putative CBD. Therefore, this study characterized the function of LCP 

associated with attachment to vegetables or fruits. 

The growth kinetics of the WT, Δlcp, and Δlcp+pMAD_lcp strains was evaluated. 

Data presented that the growth of Δlcp or Δlcp+pMAD_lcp strain was not different from 

WT (Figure 5.6b), suggesting that LCP is not be associated with listerial survival or 

growth under normal growth conditions. Attachment data showed that the percent 

attachment of all strains was much higher in cantaloupes than in leafy vegetables. It may 

be related to a physical difference by a rough surface or a component of cantaloupe skin. 

A recent study has demonstrated that the numbers of Salmonella typhimurium attached on 

romaine lettuce varied in the different regions and with ages of the leaves (23). In 

addition, bacterial attachment on spinach was higher than on lettuce. It could be caused 

by a different content of dietary fiber including cellulose in iceberg lettuce (1.25 g 

fiber/100 g leaf) and spinach (2.33 g fiber/100 g leaf) (27). A relatively more amount of 

dietary fiber in spinach than in iceberg lettuce may contribute the higher % of the 

pathogen attached to spinach than lettuce. Data from other studies and the current study 

involved in attachment to leafy vegetables may imply that bacterial attachment or 

colonization can be changed by different compositions of plant tissue or cell wall 

components according to various vegetables, sites, or ages. Therefore, further study for 
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the attachment of L. monocytogenes to various leafy vegetables is needed for the risk 

assessment of the food born-pathogen. In addition, we showed the role of LCP in an 

adherence to human cells (Figrure 5.9). Using the recombinant proteins with different 

domains of LCP can be utilized to study the functional interactions between LCP and 

human cells. 

For cellulose binding assay we coated 96-well plates with commercially available 

cellulose or its derivatives such as cellulose acetate, methyl cellulose, and cellulose 

microcrystalline. Except cellulose acetate, data from other cellulose derivatives were not 

consistent due to a high background of non-specific staining or poor coating on plates. 

Thus, we coated the ELISA plate with 1% (w/v) cellulose acetate dissolved in glacial 

acetic acid followed by Wierzba et al (38). This suggests that the binding between L. 

monocytogenes and cellulose acetate is pH dependent. We also confirmed the effect of 

cellulose acetate coating via the measurement of the OD values of all the strains from 

coated or uncoated wells. Differences between wild type and mutant in attachment assay 

(10-fold) and cellulose binding assay (1.72-fold) were presented. The explanations could 

be : 1) a synthetic cellulose compound is different from natural cellulose; 2) L. 

monocytogenes may bind to more than one component of plant cell walls, such as pectin 

or hemicelluloses; 3) Besides LCP, there may be other bacterial attachment-inducing 

ligand (an adhesin) to the surface of vegetables leaf. 

In conclusion, this is the first study to identify LCP of L. monocytogenes, a 

listerial surface protein that interacts with cellulose in vegetables or fruit component. To 

best out knowledge, LCP in serotype 4b strains contains higher homology to the CBD of 

Endoglucanase D in Clostridium cellulovorans than other Listeria ssp. strains (Figure 

5.4). Further studies for lcp mutant strain with various RTE edible vegetables and fruits 
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or different serotype strains (i.e., 1/2a and 1/2b) for risk assessment as well as under 

different environmental stress conditions are required to find effective strategies for the 

prevention of human listeriosis. In addition, a mechanistic study on the relationship 

between listerial surface proteins and biofilm formation on a biotic (plant or animal host) 

or an abiotic surface can be further conducted. Consequently, results from this study may 

provide a better understanding of the adherence of L. monocytogenes in leafy vegetables 

and fruit. This study may also contribute to the development of novel strategies for 

decontamination, preservation, or storage of RTE edible vegetables. 
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Table 5.1 Pirmers sequences used in vegetables study 

Gene Locus Forward Primer Reverse Primer 

gap LMOf2365_2432 GCTCAACGTGTTCCAGTTCCA GCTGCTTCCATAGCTGCATTTA 

LMOf2365_0128 ATTTAGCTCCCGAATTCCCG CGAAGCGTCGATACCGAGTT 

LMOf2365_0174 GGATTTCACACTGCCAAGCC CCCTTTTTACAGTGGCCGTTC 

LMOf2365_0186 TTCATGTAGCAACTCCGGCA TCCCGTCAATGTGTCTGATTCT 

plcB LMOf2365_0216 TGGCTGATTACCGAGAAGGG ATTATTGGCGTGCATAGGTTGA 

LMOf2365_0338 TTACTGCCTTACCTGCGATGG TTTCGTGTCACCAACATGGG 

LMOf2365_0347 TGCAAGCGTAACTCCAGCAA CTGCCACGCTTAGTTTTACAACAT 

LMOf2365_0349 TTTTACAACAGATAAAATGCCAGCA TTGAGGGCTTATCTCCACCG 

LMOf2365_0350 CAAGTTGCAGCATTACCAGTGTT AGTTCTGGCAAAATAGCGCC 

LMOf2365_0413 GGAGCAGGTTCTGTTCTTCCAA ACTGGAGCCTCCGCTTGTAC 

LMOf2365_0498 TCAGCTTTTGTGGGATGTTCTTC TTCACTGACATCCAAATCATCCTC 

LMOf2365_0524 GCGGATGCAATTTCACTTCA GCCGTCACCGAAGTATCTTCC 

LMOf2365_0656 TGGGCAAGATTACGGTTTCC TGTAAGCCGCTCCATCATTG 

LMOf2365_0693 TGGGACGAGCAGTGTGGA TCGCATGGTATAAATCGCCA 

LMOf2365_0694 GCCTGATGCGCCTACTCTTT GCCCAACTGCCTCTTCAAATT 

LMOf2365_0768 TCCAGCACCACCAGTAACACC TTCCAGGTTTTGCAACGTGA 

LMOf2365_0805 ATGGTCGTGTGGGAGAGGC TTCCGCCGAAAACACACC 

LMOf2365_0852 CAGTAGGATTGGCGAGTGGG CTCGGCTCCGTCTGCATC 

lcp LMOf2365_0859 AGTGAAGCATTTAAGTGGGACATG TCATTGGCTTGCGTTGCATA 

LMOf2365_1144 CGCTTACAGATTCAAAGCCGAT AACTGGGCTAGTTGCAGAGGG 

LMOf2365_1254 GCTGGCCATAAGCGAGGTATT CATTAGCGGGCTTTTCCACTAG 

LMOf2365_1432 ACGTCCGACACATTATCCGG CCTGTTGCGTTTGTTGGTGTT 

LMOf2365_1974 AGATACAGCACTCGCAAACGAA TAACGCTGACTGGCTCACCAT 

LMOf2365_2052 AGAACTGGCAGCCTCTTCAGAT GGATGAGCACTAAACCCAACAAG 

LMOf2365_2117 AGGAGATAAGGCGCTGAGTGG CCGCTGTCCCTGTACCATTT 

LMOf2365_2121 CACTTCACCGTTATCCGACGT TTTCAACATCGCCAATTTCG 

LMOf2365_2210 GTATCAAGTTACCTATGAGCGTTCCA TTGATAACATGCCAGAACTTCCA 

LMOf2365_2211 AAATATTAAAACAGTTGTAAGCGGCA CCCCGACTAAACCTGCATGA 

LMOf2365_2212 GCAAGTGACCCAGCGACAAT CCGGTCACAGTAGCGATTCC 

LMOf2365_2638 GTGATTTCATCCGAAGCAACAA CTTCCTAGTGCAAAAAAGAGAGCAT 

LMOf2365_2694 CAAGAAGTCACGCTCCTTGGA TCTGTAATAGTCAGTTGGGCCGT 

LMOf2365_2812 TTTGTCTTGCGTAAATGCTCACA GCATCGTGATTGTTTGCCCT 
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   Strain or plasmid  Description   Referecne or 
 source 

 Strains   

   E. coli DH5   Cloning host Invitrogen  

  L. monocytogenes F2365       Wild type of serotype 4b strain  this study 

 Δlcp r
    LMOf2365_0859 deletion mutant strain, Cm   this study 

 Δlcp+pMAD_lcp r r
      Complementation of LMOf2365_0859 deletion mutant strain, Er , Cm   this study 

 Plasmids   

      pMK4 r r
         Shuttle vector (5.585 kb) harboring bla and cat, Ap , Cm   (34) 

      pMAD r
      Temperature sensitive shuttle vector (9.666 kb), Er   (3) 

      pMAD_cat r r 
     pMAD derivative containing cat, Er , Cm   this study 

      pMAD_lcp r r
      pMAD_cat derivative allowing deletion of LMOf2365_0859, Er   , Cm   this study 

 Primers   

      0859UF   5'- GCGCGGATCCCAATTGCTTATCTATTTGCA -3'   this study 

      0859UR   5'- GCGCGTCGACCATTGCAACTCTTATATTAC -3'   this study 

      0859DF   5'- GCGCGAATTCGGAAAGACAATAAGAAGGTA -3'   this study 

      0859DR   5'- GCGCAGATCTACCTGCTGGATTTGGCACCG -3'   this study 

      0859F   5'- ACGCATCTAATGGGGAAGCAACCA -3'   this study 

      0859R   5'- TGGCTTGCGTTGCATAGCTCAC -3'   this study 

 CatF   5'- GCGCGTCGACTCTAGAGCGCTTAAAACCAGTCATACCAA -3'   this study 

 CatR   5'- GCGCGAATTCCTCGAGTCACCTAGATCTGGAGCTGTAAT -3'   this study 

 

 

Table 5.2 Strains, plasmids, and primers used in vegetables study 

* Underlines indicate restriction enzyme sites: GGATCC (BamHI), GTCGAC (SalI), 
GAATTC (EcoRI), AGATCT (BglII). 
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  Figure 5.1 The growth of F2365 on lettuce leaves (L.L) or in PBS. 

89 



www.manaraa.com

 

 

 

  
 

  
  

   
 

  
 

 

Figure 5.2 The transcription levels of genes encoding listerial surface proteins and 
lipases. 

The transcription levels of 32 genes encoding surface proteins and lipases in L. 
monocytogenes colonized on lettuce leaf was measured at 8 and 16 h after incubation. 
gap was used as an internal control. Transcription levels were expressed as log2. Data 
were obtained from three independent experiments using three biological RNA samples 
per each experiment (n = 9). Data were analyzed using Student’s t-test. Bars represent 
SEM. 
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Figure 5.3 In silico analysis of a putative Listeria cellulose binding protein. 

J. Craig Venter Institute (JCVI) annotation file, KEGG database, and NCBI CBLAST 
module were used to select a candidate gene for the listerial attachment on lettuce leaf. 
The NCBI database showed that LCP (2027 aa) contains a putative cellulose binding 
domain (CBD, at position 20-144 aa), 7 bacterial Ig-like domains (Big_3), and 
LPXTG motif. The surface protein (LCP) has amino acid sequences similar to a CBD of 
Endoglucanase D from Clostridium cellulovorans (3NDZ). ClustalW2 and ESPript 2.2 
softwares were used to generate the sequence alignment. 

Figure 5.4 Orthologous sequences of LCP in Listeria spp. strains. 

Clostridium cellulovorans retains a cellulose binding domain (accession number: 
3NDZ_A). Mutiple sequence alignment was done using ClustalW2 and ESPript 2.2 
softwares. 
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Figure 5.5 Construction of in-frame deletion lcp mutant. 

The PCR products from adjacent the 5′ and 3′ flanking regions of LMOf2365_0859 were 
amplified and the generated up- and down-DNA fragments were digested with BamHI 
and SalI and EcoRI and BglII, respectively. The digested each DNA fragment with 
pMAD_cat digested with the same restriction enzymes was ligated. pMAD_lcp was 
transformed into L. monocytogenes F2365. The recombinant plasmid was incorporated 
into the chromosome of F2365 by 1st homologous recombination at 43°C. 
Δlcp+pMAD_lcp was subcultured at 30°C to select deletion mutant mediated through 2nd 

homologous recombination. The complementation of Δlcp+pMAD_lcp was generated 
after first incorporation of the recombinant plasmid into the chromosome of F2365. 
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Figure 5.6 Confirmation of Δlcp mutant strain and the cell growth. 

Δlcp and complemented strains were confirmed by PCR using primers (0859F/R) 
designed from a region of deleted gene. The size of PCR product is 180 bp (a). The 
growth of WT, Δlcp, and Δlcp+pMAD_lcp. The growth kinetics for bacterial strains was 
measured at 2, 4, 8, 16, and 24 h by a standard plate count. Data were obtained from three 
independent experiments using duplicate bacterial samples per each experiment (n = 6). 
Data were analyzed by ANOVA. Bars represent SEM (b). 
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Figure 5.7 Attachment assay in WT, Δlcp, and Δlcp+pMAD_lcp strains to lettuce 
leaves. 
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Figure 5.7 (Continued) 

Data were obtained from three independent experiments using triplicate biological 
samples per each experiment (n = 9). The difference in the percentage of attached 
bacteria to total bacterial numbers inoculated on lettuce leaves was analyzed by ANOVA. 
Bars represent SEM. The symbol (*) represents a significant difference (P < 0.0001) 
between WT/complement and Δlcp (a). All strains labeled with CFSE (5 nM) revealed 
under fluorescent microscope (Nickon, Tokyo, Japan) at 20 × magnification with FITC 
filter (b). Attached WT, Δlcp, and Δlcp+pMAD_lcp strains were observed under a JEOL 
JSM-6500F scanning electron microscope (JEOL USA, Peabody, MA) at 5kv (c). 
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Figure 5.8 Attachment of WT, Δlcp, and Δlcp+pMAD_lcp strains to spinach and 
cantaloupe. 

Data were obtained from three independent experiments using triplicate bacterial samples 
per each experiment (n = 9). The difference in the percentage of attached bacteria to total 
bacterial numbers inoculated on spinach leaves (a) and cantaloupe skins (b) was analyzed 
using ANOVA. Bars represent SEM. The symbol (*) represents a significant difference 
(P < 0.0001) between WT/complement and Δlcp. 
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Figure 5.9 The adhesion of L. monocytogenes to Caco-2 and HepG-2. 

Figure 5.10 Cellulose binding assay. 

A 96-well plates were coated with 1% (w/v) cellulose acetate. L. monocytogenes bound 
to cellulose acetate using 0.5% (w/v) crystal violet was measured using a microplate 
reader at OD590. Three independent experiments with triplicate biological samples per 
each experiment were used. The difference in OD values was analyzed using ANOVA. 
The symbol (*) represents a significant difference (P < 0.01) between wild 
type/complement and Δlcp. 
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CHAPTER VI 

CONCLUSION 

The concern about the prevalence of L. monocytogenes in RTE foods has been 

escalated due to food-borne outbreaks and the pathogen’s abilities in resistance to heat, 

antimicrobial agents, sanitizers or detergents, physical treatments during food processing. 

According to the USDA/ERS, the economic loss due to diseases caused by five major 

food-borne pathogens including L. monocytogenes and others (Escherichia. coli 

O157:H7, non-O157 Shiga-toxin producing E. coli, Campylobactor, and Samonella) 

approach 2.3 and 4.6 billion dollars per year. Particularly, food-borne pathogen 

contamination in RTE foods is a major challenge for the food industry. The FDA 

established a “zero tolerance” policy for L. monocytogenes in food as well as the 

European Union has a “zero tolerance” regulation for L. monocytogenes in infant and 

special diets for patients. The policy is based on data that even low concentration of L. 

monocytogenes exists in food products, the growth of L. monocytogenes during the 

packaging, distribution, or storage can increase and reach high numbers, to cause 

listeriosis. Currently, the consumption of RTE poultry deli meats and vegetables has 

annually increased, and the presence of L. monocytogenes in the RTE meat and fresh 

produce has been frequently reported. However, there is no clear understanding how L. 

monocytogenes attach, colonize, survive, and grow on the food matrices. 

In 1998-1999 and 2002 several major outbreaks of human listeriosis were 

occurred due to ingestion of turkey deli meat contaminated with L. monocytogenes. Our 
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previous study showed that L. monocytogenes grown on a RTE turkey deli meat was 

more pathogenic to mouse macrophage cell line J774A.1 when compared to the bacteria 

grown in BHI. Thus, we examined which gene is involved in the virulence factors of L. 

monocytogenes accounting for the adaptation and survival ability of the pathogen in the 

food matrix using a microarray. However, the transcripts of genes encoding for known 

virulence factors such as sigB, prfA, inlA, inlB, plcA, plcB, and hly were not significantly 

changed in L. monocytogenes grown on the deli meat. The transcriptome data showed 

differentially expressed genes which are involved in energy metabolism, fatty acid and 

phospholipid metabolism, biosynthesis of proteins, transport and binding proteins, DNA 

metabolism, cellular processes, and regulatory functions. The growth curve of L. 

monocytogenes on a turkey deli meat showed a short exponential time, suggesting that 

deli meat products containing low concentration of L. monocytogenes can potentially be 

increased to high bacterial numbers in a short storage time. 

For a better understanding how L. monocytogenes adapts to a high salt 

concentration contained in RTE deli meat products, the transcriptome of L. 

monocytogenes was profiled under a typical salt concentration used in RTE products. 

Microarray data presented that genes involved in the uptake of glycine betaine/L-proline 

were up-regulated, whereas genes associated with phosphotransferase system (PTS), 

metabolic enzymes, and virulence factor were down-regulated. Interestingly, the 

transcripts in the most of PTS transport genes involved in the uptake of sugars such as 

glucose, fructose, mannose, and cellobiose were decreased. A relationship between the 

down-regulated PTS genes and the decreased cell growth was further examined by 

various concentrations (2.5, 5, and 10%) of salt. Results showed that the transcript levels 

of PTS genes with listerial cell growth shown to be dependent on NaCl concentration, 
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suggesting that a decrease in the transcript levels of PTS genes may be caused by salt 

stress or inhibited cell growth through salt stress. 

The consumption of RTE or minimally processed vegetables (low calorie diet) 

with poultry deli meat (white meat) has annually increased and the prevalence of L. 

monocytogenes in vegetables and fruits has also increased due to properties of 

environmental factors in harvest and distribution. Thus, the safety issues in vegetables 

and fruits are a major concern for the producers and regulatory agents. Unlike animal 

hosts or their derivative food products, few studies have been conducted on the adhesion, 

invasion, and/or virulence regulation of L. monocytogenes in RTE or minimally 

processed edible vegetables and fruits at molecular level. Therefore, one of the objectives 

in this dissertation was to understand the adherence and growth of L. monocytogenes on 

leafy vegetables and cantaloupe skins which can be vehicles cause listeriosis in humans. 

LMOf2365_0859 (lcp) was selected as a target gene among genes encoding surface 

proteins and lipases in L. monocytogenes via qRT-PCR and in silico analyses. In silico 

analysis revealed that LCP contains a putative CBD. We then hypothesized that LCP may 

be involved in attachment to lettuce leaf due to an interaction with a major component of 

plant cell walls, cellulose. lcp in-frame deletion mutant (Δlcp) was constructed and tested 

using attachment assay on leafy vegetables and cantaloupe skins. Results showed that 

Δlcp was less attached to lettuce, spinach, and cantaloupe than the WT. To further study 

an interaction between L. monocytogenes and cellulose, 96-well plate coated with 1% 

(w/v) cellulose acetate was used. Binding assay data showed that Δlcp was less bound to 

cellulose acetate than the WT and the complemented strains, suggesting that Δlcp lost its 

ability to bind to cellulose when compared to WT and the complemented strains. Results 

may imply that LCP is one of the factors that contribute to the attachment of L. 
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monocytogenes to vegetables and fruits. Additionally, the functions of LCP involved in 

adherence to several human endothelial and epithelial cell types were evaluated. Results 

showed that Δlcp significantly less attached to the host cells than the WT. 

Throughout my dissertation research the global transcriptome profiles of L. 

monocytogenes grown on a turkey deli meat revealed differentially expressed genes 

involved in the adaptation, attachment, or growth in the pathogen. Besides, the 

transcriptome profiles of L. monocytogenes in response to salt stress also showed 

transcriptional changes of genes associated with homeostasis, survival, or adaptation. 

Finally, the last study has identified a novel gene of L. monocytogenes, lcp, as a gene 

coding for attachment to vegetables and fruit as well as a virulence factor. In conclusion, 

the data from the current observational, mechanistic, and functional studies have 

demonstrated the biological properties of L. monocytogenes in RTE food products. The 

information generated from this dissertation research can help the development of 

strategies to prevent food contamination by L. monocytogenes during processing, storage 

and preservation. 
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